Timings for rat.v

(* (c) Copyright 2006-2015 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import bigop ssralg div ssrnum ssrint.

(******************************************************************************)
(* This file defines a datatype for rational numbers and equips it with a     *)
(* structure of archimedean, real field, with int and nat declared as closed  *)
(* subrings.                                                                  *)
(*          rat == the type of rational number, with single constructor Rat   *)
(*      Rat p h == the element of type rat build from p a pair of integers and*)
(*                 h a proof of (0 < p.2) && coprime `|p.1| `|p.2|            *)
(*         n%:Q == explicit cast from int to rat, postfix notation for the    *)
(*                 ratz constant                                              *)
(*       numq r == numerator of (r : rat)                                     *)
(*       denq r == denominator of (r : rat)                                   *)
(* x \is a Qint == x is an element of rat whose denominator is equal to 1     *)
(* x \is a Qnat == x is a positive element of rat whose denominator is equal  *)
(*                 to 1                                                       *)
(*       ratr x == generic embedding of  (r : R) into an arbitrary unitring.  *)
(******************************************************************************)

Import GRing.Theory.
Import Num.Theory.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope ring_scope.
Local Notation sgr := Num.sg.

Record rat : Set := Rat {
  valq : (int * int) ;
  _ : (0 < valq.2) && coprime `|valq.1| `|valq.2|
}.

Bind Scope ring_scope with rat.
Delimit Scope rat_scope with Q.

Definition ratz (n : int) := @Rat (n, 1) (coprimen1 _).
(* Coercion ratz (n : int) := @Rat (n, 1) (coprimen1 _). *)

Canonical rat_subType := Eval hnf in [subType for valq].
Definition rat_eqMixin := [eqMixin of rat by <:].
Canonical rat_eqType := EqType rat rat_eqMixin.
Definition rat_choiceMixin := [choiceMixin of rat by <:].
Canonical rat_choiceType := ChoiceType rat rat_choiceMixin.
Definition rat_countMixin := [countMixin of rat by <:].
Canonical rat_countType := CountType rat rat_countMixin.
Canonical rat_subCountType := [subCountType of rat].

Definition numq x := nosimpl ((valq x).1).
Definition denq x := nosimpl ((valq x).2).

Lemma denq_gt0  x : 0 < denq x.
Proof. by rewrite /denq; case: x=> [[a b] /= /andP []]. Qed.
Hint Resolve denq_gt0.

Definition denq_ge0 x := ltrW (denq_gt0 x).

Lemma denq_lt0  x : (denq x < 0) = false. Proof. by rewrite ltr_gtF. Qed.

Lemma denq_neq0 x : denq x != 0.
Proof. by rewrite /denq gtr_eqF ?denq_gt0. Qed.
Hint Resolve denq_neq0.

Lemma denq_eq0 x : (denq x == 0) = false.
Proof. exact: negPf (denq_neq0 _). Qed.

Lemma coprime_num_den x : coprime `|numq x| `|denq x|.
Proof. by rewrite /numq /denq; case: x=> [[a b] /= /andP []]. Qed.

Fact RatK x P : @Rat (numq x, denq x) P = x.
Proof. by move:x P => [[a b] P'] P; apply: val_inj. Qed.

Fact fracq_subproof : forall x : int * int,
  let n :=
    if x.2 == 0 then 0 else
    (-1) ^ ((x.2 < 0) (+) (x.1 < 0)) * (`|x.1| %/ gcdn `|x.1| `|x.2|)%:Z in
  let d := if x.2 == 0 then 1 else (`|x.2| %/ gcdn `|x.1| `|x.2|)%:Z in
  (0 < d) && (coprime `|n| `|d|).
Proof.
move=> [m n] /=; case: (altP (n =P 0))=> [//|n0].
rewrite ltz_nat divn_gt0 ?gcdn_gt0 ?absz_gt0 ?n0 ?orbT //.
rewrite dvdn_leq ?absz_gt0 ?dvdn_gcdr //= !abszM absz_sign mul1n.
have [->|m0] := altP (m =P 0); first by rewrite div0n gcd0n divnn absz_gt0 n0.
move: n0 m0; rewrite -!absz_gt0 absz_nat.
move: `|_|%N `|_|%N => {m n} [|m] [|n] // _ _.
rewrite /coprime -(@eqn_pmul2l (gcdn m.+1 n.+1)) ?gcdn_gt0 //.
rewrite muln_gcdr; do 2!rewrite muln_divCA ?(dvdn_gcdl, dvdn_gcdr) ?divnn //.
by rewrite ?gcdn_gt0 ?muln1.
Qed.

Definition fracq (x : int * int) := nosimpl (@Rat (_, _) (fracq_subproof x)).

Fact ratz_frac n : ratz n = fracq (n, 1).
Proof. by apply: val_inj; rewrite /= gcdn1 !divn1 abszE mulr_sign_norm. Qed.

Fact valqK x : fracq (valq x) = x.
Proof.
move:x => [[n d] /= Pnd]; apply: val_inj=> /=.
move: Pnd; rewrite /coprime /fracq /=; case/andP=> hd; move/eqP=> hnd.
by rewrite ltr_gtF ?gtr_eqF //= hnd !divn1 mulz_sign_abs abszE gtr0_norm.
Qed.

Fact scalq_key : unit. Proof. by []. Qed.
Definition scalq_def x := sgr x.2 * (gcdn `|x.1| `|x.2|)%:Z.
Definition scalq := locked_with scalq_key scalq_def.
Canonical scalq_unlockable := [unlockable fun scalq].

Fact scalq_eq0 x : (scalq x == 0) = (x.2 == 0).
Proof.
case: x => n d; rewrite unlock /= mulf_eq0 sgr_eq0 /= eqz_nat.
rewrite -[gcdn _ _ == 0%N]negbK -lt0n gcdn_gt0 ?absz_gt0 [X in ~~ X]orbC.
by case: sgrP.
Qed.

Lemma sgr_scalq x : sgr (scalq x) = sgr x.2.
Proof.
rewrite unlock sgrM sgr_id -[(gcdn _ _)%:Z]intz sgr_nat.
by rewrite -lt0n gcdn_gt0 ?absz_gt0 orbC; case: sgrP; rewrite // mul0r.
Qed.

Lemma signr_scalq x : (scalq x < 0) = (x.2 < 0).
Proof. by rewrite -!sgr_cp0 sgr_scalq. Qed.

Lemma scalqE x :
  x.2 != 0 -> scalq x = (-1) ^+ (x.2 < 0)%R * (gcdn `|x.1| `|x.2|)%:Z.
Proof. by rewrite unlock; case: sgrP. Qed.

Fact valq_frac x :
  x.2 != 0 -> x = (scalq x * numq (fracq x), scalq x * denq (fracq x)).
Proof.
case: x => [n d] /= d_neq0; rewrite /denq /numq scalqE //= (negPf d_neq0).
rewrite mulr_signM -mulrA -!PoszM addKb.
do 2!rewrite muln_divCA ?(dvdn_gcdl, dvdn_gcdr) // divnn.
by rewrite gcdn_gt0 !absz_gt0 d_neq0 orbT !muln1 !mulz_sign_abs.
Qed.

Definition zeroq := fracq (0, 1).
Definition oneq := fracq (1, 1).

Fact frac0q x : fracq (0, x) = zeroq.
Proof.
apply: val_inj; rewrite //= div0n !gcd0n !mulr0 !divnn.
by have [//|x_neq0] := altP eqP; rewrite absz_gt0 x_neq0.
Qed.

Fact fracq0  x : fracq (x, 0) = zeroq. Proof. exact/eqP. Qed.

CoInductive fracq_spec (x : int * int) : int * int -> rat -> Type :=
  | FracqSpecN of x.2 = 0 : fracq_spec x (x.1, 0) zeroq
  | FracqSpecP k fx of k != 0 : fracq_spec x (k * numq fx, k * denq fx) fx.

Fact fracqP x : fracq_spec x x (fracq x).
Proof.
case: x => n d /=; have [d_eq0 | d_neq0] := eqVneq d 0.
  by rewrite d_eq0 fracq0; constructor.
by rewrite {2}[(_, _)]valq_frac //; constructor; rewrite scalq_eq0.
Qed.

Lemma rat_eqE x y : (x == y) = (numq x == numq y) && (denq x == denq y).
Proof.
rewrite -val_eqE [val x]surjective_pairing [val y]surjective_pairing /=.
by rewrite xpair_eqE.
Qed.

Lemma sgr_denq x : sgr (denq x) = 1. Proof. by apply/eqP; rewrite sgr_cp0. Qed.

Lemma normr_denq x : `|denq x| = denq x. Proof. by rewrite gtr0_norm. Qed.

Lemma absz_denq x : `|denq x|%N = denq x :> int.
Proof. by rewrite abszE normr_denq. Qed.

Lemma rat_eq x y : (x == y) = (numq x * denq y == numq y * denq x).
Proof.
symmetry; rewrite rat_eqE andbC.
have [->|] /= := altP (denq _ =P _); first by rewrite (inj_eq (mulIf _)).
apply: contraNF => /eqP hxy; rewrite -absz_denq -[X in _ == X]absz_denq.
rewrite eqz_nat /= eqn_dvd.
rewrite -(@Gauss_dvdr _ `|numq x|) 1?coprime_sym ?coprime_num_den // andbC.
rewrite -(@Gauss_dvdr _ `|numq y|) 1?coprime_sym ?coprime_num_den //.
by rewrite -!abszM hxy -{1}hxy !abszM !dvdn_mull ?dvdnn.
Qed.

Fact fracq_eq x y : x.2 != 0 -> y.2 != 0 ->
  (fracq x == fracq y) = (x.1 * y.2 == y.1 * x.2).
Proof.
case: fracqP=> //= u fx u_neq0 _; case: fracqP=> //= v fy v_neq0 _; symmetry.
rewrite [X in (_ == X)]mulrC mulrACA [X in (_ == X)]mulrACA.
by rewrite [denq _ * _]mulrC (inj_eq (mulfI _)) ?mulf_neq0 // rat_eq.
Qed.

Fact fracq_eq0 x : (fracq x == zeroq) = (x.1 == 0) || (x.2 == 0).
Proof.
move: x=> [n d] /=; have [->|d0] := altP (d =P 0).
  by rewrite fracq0 eqxx orbT.
by rewrite orbF fracq_eq ?d0 //= mulr1 mul0r.
Qed.

Fact fracqMM x n d : x != 0 -> fracq (x * n, x * d) = fracq (n, d).
Proof.
move=> x_neq0; apply/eqP.
have [->|d_neq0] := eqVneq d 0; first by rewrite mulr0 !fracq0.
by rewrite fracq_eq ?mulf_neq0 //= mulrCA mulrA.
Qed.

Definition addq_subdef (x y : int * int) := (x.1 * y.2 + y.1 * x.2, x.2 * y.2).
Definition addq (x y : rat) := nosimpl fracq (addq_subdef (valq x) (valq y)).

Definition oppq_subdef (x : int * int) := (- x.1, x.2).
Definition oppq (x : rat) := nosimpl fracq (oppq_subdef (valq x)).

Fact addq_subdefC : commutative addq_subdef.
Proof. by move=> x y; rewrite /addq_subdef addrC [_.2 * _]mulrC. Qed.

Fact addq_subdefA : associative addq_subdef.
Proof.
move=> x y z; rewrite /addq_subdef.
by rewrite !mulrA !mulrDl addrA ![_ * x.2]mulrC !mulrA.
Qed.

Fact addq_frac x y : x.2 != 0 -> y.2 != 0 ->
  (addq (fracq x) (fracq y)) = fracq (addq_subdef x y).
Proof.
case: fracqP => // u fx u_neq0 _; case: fracqP => // v fy v_neq0 _.
rewrite /addq_subdef /= ![(_ * numq _) * _]mulrACA [(_ * denq _) * _]mulrACA.
by rewrite [v * _]mulrC -mulrDr fracqMM ?mulf_neq0.
Qed.

Fact ratzD : {morph ratz : x y / x + y >-> addq x y}.
Proof.
by move=> x y /=; rewrite !ratz_frac addq_frac // /addq_subdef /= !mulr1.
Qed.

Fact oppq_frac x : oppq (fracq x) = fracq (oppq_subdef x).
Proof.
rewrite /oppq_subdef; case: fracqP => /= [|u fx u_neq0].
  by rewrite fracq0.
by rewrite -mulrN fracqMM.
Qed.

Fact ratzN : {morph ratz : x / - x >-> oppq x}.
Proof. by move=> x /=; rewrite !ratz_frac oppq_frac // /add /= !mulr1. Qed.

Fact addqC : commutative addq.
Proof. by move=> x y; rewrite /addq /=; rewrite addq_subdefC. Qed.

Fact addqA : associative addq.
Proof.
move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK.
by rewrite !addq_frac ?mulf_neq0 ?denq_neq0 // addq_subdefA.
Qed.

Fact add0q : left_id zeroq addq.
Proof.
move=> x; rewrite -[x]valqK addq_frac ?denq_neq0 // /addq_subdef /=.
by rewrite mul0r add0r mulr1 mul1r -surjective_pairing.
Qed.

Fact addNq : left_inverse (fracq (0, 1)) oppq addq.
Proof.
move=> x; rewrite -[x]valqK !(addq_frac, oppq_frac) ?denq_neq0 //.
rewrite /addq_subdef /oppq_subdef //= mulNr addNr; apply/eqP.
by rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= !mul0r.
Qed.

Definition rat_ZmodMixin := ZmodMixin addqA addqC add0q addNq.
Canonical rat_ZmodType := ZmodType rat rat_ZmodMixin.

Definition mulq_subdef (x y : int * int) := nosimpl (x.1 * y.1, x.2 * y.2).
Definition mulq (x y : rat) := nosimpl fracq (mulq_subdef (valq x) (valq y)).

Fact mulq_subdefC : commutative mulq_subdef.
Proof. by move=> x y; rewrite /mulq_subdef mulrC [_ * x.2]mulrC. Qed.

Fact mul_subdefA : associative mulq_subdef.
Proof. by move=> x y z; rewrite /mulq_subdef !mulrA. Qed.

Definition invq_subdef (x : int * int) := nosimpl (x.2, x.1).
Definition invq (x : rat) := nosimpl fracq (invq_subdef (valq x)).

Fact mulq_frac x y : (mulq (fracq x) (fracq y)) = fracq (mulq_subdef x y).
Proof.
rewrite /mulq_subdef; case: fracqP => /= [|u fx u_neq0].
  by rewrite mul0r fracq0 /mulq /mulq_subdef /= mul0r frac0q.
case: fracqP=> /= [|v fy v_neq0].
  by rewrite mulr0 fracq0 /mulq /mulq_subdef /= mulr0 frac0q.
by rewrite ![_ * (v * _)]mulrACA fracqMM ?mulf_neq0.
Qed.

Fact ratzM : {morph ratz : x y / x * y >-> mulq x y}.
Proof. by move=> x y /=; rewrite !ratz_frac mulq_frac // /= !mulr1. Qed.

Fact invq_frac x :
  x.1 != 0 -> x.2 != 0 -> invq (fracq x) = fracq (invq_subdef x).
Proof.
by rewrite /invq_subdef; case: fracqP => // k {x} x k0; rewrite fracqMM.
Qed.

Fact mulqC : commutative mulq.
Proof. by move=> x y; rewrite /mulq mulq_subdefC. Qed.

Fact mulqA : associative mulq.
Proof.
by move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK !mulq_frac mul_subdefA.
Qed.

Fact mul1q : left_id oneq mulq.
Proof.
move=> x; rewrite -[x]valqK; rewrite mulq_frac /mulq_subdef.
by rewrite !mul1r -surjective_pairing.
Qed.

Fact mulq_addl : left_distributive mulq addq.
Proof.
move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK /=.
rewrite !(mulq_frac, addq_frac) ?mulf_neq0 ?denq_neq0 //=.
apply/eqP; rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= !mulrDl; apply/eqP.
by rewrite !mulrA ![_ * (valq z).1]mulrC !mulrA ![_ * (valq x).2]mulrC !mulrA.
Qed.

Fact nonzero1q : oneq != zeroq. Proof. by []. Qed.

Definition rat_comRingMixin :=
  ComRingMixin mulqA mulqC mul1q mulq_addl nonzero1q.
Canonical rat_Ring := Eval hnf in RingType rat rat_comRingMixin.
Canonical rat_comRing := Eval hnf in ComRingType rat mulqC.

Fact mulVq x : x != 0 -> mulq (invq x) x = 1.
Proof.
rewrite -[x]valqK fracq_eq ?denq_neq0 //= mulr1 mul0r=> nx0.
rewrite !(mulq_frac, invq_frac) ?denq_neq0 //.
by apply/eqP; rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= mulr1 mul1r mulrC.
Qed.

Fact invq0 : invq 0 = 0. Proof. by apply/eqP. Qed.

Definition RatFieldUnitMixin := FieldUnitMixin mulVq invq0.
Canonical rat_unitRing :=
  Eval hnf in UnitRingType rat RatFieldUnitMixin.
Canonical rat_comUnitRing := Eval hnf in [comUnitRingType of rat].

Fact rat_field_axiom : GRing.Field.mixin_of rat_unitRing. Proof. exact. Qed.

Definition RatFieldIdomainMixin := (FieldIdomainMixin rat_field_axiom).
Canonical rat_iDomain :=
  Eval hnf in IdomainType rat (FieldIdomainMixin rat_field_axiom).
Canonical rat_fieldType := FieldType rat rat_field_axiom.

Lemma numq_eq0 x : (numq x == 0) = (x == 0).
Proof.
rewrite -[x]valqK fracq_eq0; case: fracqP=> /= [|k {x} x k0].
  by rewrite eqxx orbT.
by rewrite !mulf_eq0 (negPf k0) /= denq_eq0 orbF.
Qed.

Notation "n %:Q" := ((n : int)%:~R : rat)
  (at level 2, left associativity, format "n %:Q")  : ring_scope.

Hint Resolve denq_neq0 denq_gt0 denq_ge0.

Definition subq (x y : rat) : rat := (addq x (oppq y)).
Definition divq (x y : rat) : rat := (mulq x (invq y)).

Notation "0" := zeroq : rat_scope.
Notation "1" := oneq : rat_scope.
Infix "+" := addq : rat_scope.
Notation "- x" := (oppq x) : rat_scope.
Infix "*" := mulq : rat_scope.
Notation "x ^-1" := (invq x) : rat_scope.
Infix "-" := subq : rat_scope.
Infix "/" := divq : rat_scope.

(* ratz should not be used, %:Q should be used instead *)
Lemma ratzE n : ratz n = n%:Q.
Proof.
elim: n=> [|n ihn|n ihn]; first by rewrite mulr0z ratz_frac.
  by rewrite intS mulrzDl ratzD ihn.
by rewrite intS opprD mulrzDl ratzD ihn.
Qed.

Lemma numq_int n : numq n%:Q = n. Proof. by rewrite -ratzE. Qed.
Lemma denq_int n : denq n%:Q = 1. Proof. by rewrite -ratzE. Qed.

Lemma rat0 : 0%:Q = 0. Proof. by []. Qed.
Lemma rat1 : 1%:Q = 1. Proof. by []. Qed.

Lemma numqN x : numq (- x) = - numq x.
Proof.
rewrite /numq; case: x=> [[a b] /= /andP [hb]]; rewrite /coprime=> /eqP hab.
by rewrite ltr_gtF ?gtr_eqF // {2}abszN hab divn1 mulz_sign_abs.
Qed.

Lemma denqN x : denq (- x) = denq x.
Proof.
rewrite /denq; case: x=> [[a b] /= /andP [hb]]; rewrite /coprime=> /eqP hab.
by rewrite gtr_eqF // abszN hab divn1 gtz0_abs.
Qed.

(* Will be subsumed by pnatr_eq0 *)
Fact intq_eq0 n : (n%:~R == 0 :> rat) = (n == 0)%N.
Proof. by rewrite -ratzE /ratz rat_eqE /numq /denq /= mulr0 eqxx andbT. Qed.

(* fracq should never appear, its canonical form is _%:Q / _%:Q *)
Lemma fracqE x : fracq x = x.1%:Q / x.2%:Q.
Proof.
move:x => [m n] /=.
case n0: (n == 0); first by rewrite (eqP n0) fracq0 rat0 invr0 mulr0.
rewrite -[m%:Q]valqK -[n%:Q]valqK.
rewrite [_^-1]invq_frac ?(denq_neq0, numq_eq0, n0, intq_eq0) //.
rewrite [_ / _]mulq_frac /= /invq_subdef /mulq_subdef /=.
by rewrite -!/(numq _) -!/(denq _) !numq_int !denq_int mul1r mulr1.
Qed.

Lemma divq_num_den x : (numq x)%:Q / (denq x)%:Q = x.
Proof. by rewrite -{3}[x]valqK [valq _]surjective_pairing /= fracqE. Qed.

CoInductive divq_spec (n d : int) : int -> int -> rat -> Type :=
| DivqSpecN of d = 0 : divq_spec n d n 0 0
| DivqSpecP k x of k != 0 : divq_spec n d (k * numq x) (k * denq x) x.

(* replaces fracqP *)
Lemma divqP n d : divq_spec n d n d (n%:Q / d%:Q).
Proof.
set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE.
by case: fracqP => [_|k fx k_neq0] /=; constructor. 
Qed.

Lemma divq_eq (nx dx ny dy : rat) :
  dx != 0 -> dy != 0 -> (nx / dx == ny / dy) = (nx * dy == ny * dx).
Proof.
move=> dx_neq0 dy_neq0; rewrite -(inj_eq (@mulIf _ (dx * dy) _)) ?mulf_neq0 //.
by rewrite mulrA divfK // mulrCA divfK // [dx * _ ]mulrC.
Qed.

CoInductive rat_spec (* (x : rat) *) : rat -> int -> int -> Type :=
  Rat_spec (n : int) (d : nat)  & coprime `|n| d.+1
  : rat_spec (* x  *) (n%:Q / d.+1%:Q) n d.+1.

Lemma ratP x : rat_spec x (numq x) (denq x).
Proof.
rewrite -{1}[x](divq_num_den); case hd: denq => [p|n].
  have: 0 < p%:Z by rewrite -hd denq_gt0.
  case: p hd=> //= n hd; constructor; rewrite -?hd ?divq_num_den //.
  by rewrite -[n.+1]/`|n.+1|%N -hd coprime_num_den.
by move: (denq_gt0 x); rewrite hd.
Qed.

Lemma coprimeq_num n d : coprime `|n| `|d| -> numq (n%:~R / d%:~R) = sgr d * n.
Proof.
move=> cnd /=; have <- := fracqE (n, d).
rewrite /numq /= (eqP (cnd : _ == 1%N)) divn1.
have [|d_gt0|d_lt0] := sgrP d;
by rewrite (mul0r, mul1r, mulN1r) //= ?[_ ^ _]signrN ?mulNr mulz_sign_abs.
Qed.

Lemma coprimeq_den n d :
  coprime `|n| `|d| -> denq (n%:~R / d%:~R) = (if d == 0 then 1 else `|d|).
Proof.
move=> cnd; have <- := fracqE (n, d).
by rewrite /denq /= (eqP (cnd : _ == 1%N)) divn1; case: d {cnd}.
Qed.

Lemma denqVz (i : int) : i != 0 -> denq (i%:~R^-1) = `|i|.
Proof.
by move=> h; rewrite -div1r -[1]/(1%:~R) coprimeq_den /= ?coprime1n // (negPf h).
Qed.

Lemma numqE x : (numq x)%:~R = x * (denq x)%:~R.
Proof. by rewrite -{2}[x]divq_num_den divfK // intq_eq0 denq_eq0. Qed.

Lemma denqP x : {d | denq x = d.+1}.
Proof. by rewrite /denq; case: x => [[_ [[|d]|]] //= _]; exists d. Qed.

Definition normq (x : rat) : rat :=  `|numq x|%:~R / (denq x)%:~R.
Definition le_rat (x y : rat) := numq x * denq y <= numq y * denq x.
Definition lt_rat (x y : rat) := numq x * denq y < numq y * denq x.

Lemma gt_rat0 x : lt_rat 0 x = (0 < numq x).
Proof. by rewrite /lt_rat mul0r mulr1. Qed.

Lemma lt_rat0 x : lt_rat x 0 = (numq x < 0).
Proof. by rewrite /lt_rat mul0r mulr1. Qed.

Lemma ge_rat0 x : le_rat 0 x = (0 <= numq x).
Proof. by rewrite /le_rat mul0r mulr1. Qed.

Lemma le_rat0 x : le_rat x 0 = (numq x <= 0).
Proof. by rewrite /le_rat mul0r mulr1. Qed.

Fact le_rat0D x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x + y).
Proof.
rewrite !ge_rat0 => hnx hny.
have hxy: (0 <= numq x * denq y + numq y * denq x).
  by rewrite addr_ge0 ?mulr_ge0.
by rewrite /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0 !ler_gtF ?mulr_ge0.
Qed.

Fact le_rat0M x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x * y).
Proof.
rewrite !ge_rat0 => hnx hny.
have hxy: (0 <= numq x * denq y + numq y * denq x).
  by rewrite addr_ge0 ?mulr_ge0.
by rewrite /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0 !ler_gtF ?mulr_ge0.
Qed.

Fact le_rat0_anti x : le_rat 0 x -> le_rat x 0 -> x = 0.
Proof.
by move=> hx hy; apply/eqP; rewrite -numq_eq0 eqr_le -ge_rat0 -le_rat0 hx hy.
Qed.

Lemma sgr_numq_div (n d : int) : sgr (numq (n%:Q / d%:Q)) = sgr n * sgr d.
Proof.
set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE.
case: fracqP => [|k fx k_neq0] /=; first by rewrite mulr0.
by rewrite !sgrM  mulrACA -expr2 sqr_sg k_neq0 sgr_denq mulr1 mul1r.
Qed.

Fact subq_ge0 x y : le_rat 0 (y - x) = le_rat x y.
Proof.
symmetry; rewrite ge_rat0 /le_rat -subr_ge0.
case: ratP => nx dx cndx; case: ratP => ny dy cndy.
rewrite -!mulNr addf_div ?intq_eq0 // !mulNr -!rmorphM -rmorphB /=.
symmetry; rewrite !lerNgt -sgr_cp0 sgr_numq_div mulrC gtr0_sg //.
by rewrite mul1r sgr_cp0.
Qed.

Fact le_rat_total : total le_rat.
Proof. by move=> x y; apply: ler_total. Qed.

Fact numq_sign_mul (b : bool) x : numq ((-1) ^+ b * x) = (-1) ^+ b * numq x.
Proof. by case: b; rewrite ?(mul1r, mulN1r) // numqN. Qed.

Fact numq_div_lt0 n d : n != 0 -> d != 0 ->
  (numq (n%:~R / d%:~R) < 0)%R = (n < 0)%R (+) (d < 0)%R.
Proof.
move=> n0 d0; rewrite -sgr_cp0 sgr_numq_div !sgr_def n0 d0.
by rewrite !mulr1n -signr_addb; case: (_ (+) _).
Qed.

Lemma normr_num_div n d : `|numq (n%:~R / d%:~R)| = numq (`|n|%:~R / `|d|%:~R).
Proof.
rewrite (normrEsg n) (normrEsg d) !rmorphM /= invfM mulrACA !sgr_def.
have [->|n_neq0] := altP eqP; first by rewrite mul0r mulr0.
have [->|d_neq0] := altP eqP; first by rewrite invr0 !mulr0.
rewrite !intr_sign invr_sign -signr_addb numq_sign_mul -numq_div_lt0 //.
by apply: (canRL (signrMK _)); rewrite mulz_sign_abs.
Qed.

Fact norm_ratN x : normq (- x) = normq x.
Proof. by rewrite /normq numqN denqN normrN. Qed.

Fact ge_rat0_norm x : le_rat 0 x -> normq x = x.
Proof.
rewrite ge_rat0; case: ratP=> [] // n d cnd n_ge0.
by rewrite /normq /= normr_num_div ?ger0_norm // divq_num_den.
Qed.

Fact lt_rat_def x y : (lt_rat x y) = (y != x) && (le_rat x y).
Proof. by rewrite /lt_rat ltr_def rat_eq. Qed.

Definition ratLeMixin := RealLeMixin le_rat0D le_rat0M le_rat0_anti
  subq_ge0 (@le_rat_total 0) norm_ratN ge_rat0_norm lt_rat_def.

Canonical rat_numDomainType := NumDomainType rat ratLeMixin.
Canonical rat_numFieldType := [numFieldType of rat].
Canonical rat_realDomainType := RealDomainType rat (@le_rat_total 0).
Canonical rat_realFieldType := [realFieldType of rat].

Lemma numq_ge0 x : (0 <= numq x) = (0 <= x).
Proof.
by case: ratP => n d cnd; rewrite ?pmulr_lge0 ?invr_gt0 (ler0z, ltr0z).
Qed.

Lemma numq_le0 x : (numq x <= 0) = (x <= 0).
Proof. by rewrite -oppr_ge0 -numqN numq_ge0 oppr_ge0. Qed.

Lemma numq_gt0 x : (0 < numq x) = (0 < x).
Proof. by rewrite !ltrNge numq_le0. Qed.

Lemma numq_lt0 x : (numq x < 0) = (x < 0).
Proof. by rewrite !ltrNge numq_ge0. Qed.

Lemma sgr_numq x : sgz (numq x) = sgz x.
Proof.
apply/eqP; case: (sgzP x); rewrite sgz_cp0 ?(numq_gt0, numq_lt0) //.
by move->.
Qed.

Lemma denq_mulr_sign (b : bool) x : denq ((-1) ^+ b * x) = denq x.
Proof. by case: b; rewrite ?(mul1r, mulN1r) // denqN. Qed.

Lemma denq_norm x : denq `|x| = denq x.
Proof. by rewrite normrEsign denq_mulr_sign. Qed.

Fact rat_archimedean : Num.archimedean_axiom [numDomainType of rat].
Proof.
move=> x; exists `|numq x|.+1; rewrite mulrS ltr_spaddl //.
rewrite pmulrn abszE intr_norm numqE normrM ler_pemulr ?norm_ge0 //.
by rewrite -intr_norm ler1n absz_gt0 denq_eq0.
Qed.

Canonical archiType := ArchiFieldType rat rat_archimedean.

Section QintPred.

Definition Qint := [qualify a x : rat | denq x == 1].
Fact Qint_key : pred_key Qint. Proof. by []. Qed.
Canonical Qint_keyed := KeyedQualifier Qint_key.

Lemma Qint_def x : (x \is a Qint) = (denq x == 1). Proof. by []. Qed.

Lemma numqK : {in Qint, cancel (fun x => numq x) intr}.
Proof. by move=> x /(_ =P 1 :> int) Zx; rewrite numqE Zx rmorph1 mulr1. Qed.

Lemma QintP x : reflect (exists z, x = z%:~R) (x \in Qint).
Proof.
apply: (iffP idP) => [/numqK <- | [z ->]]; first by exists (numq x).
by rewrite Qint_def denq_int.
Qed.

Fact Qint_subring_closed : subring_closed Qint.
Proof.
split=> // _ _ /QintP[x ->] /QintP[y ->]; apply/QintP.
  by exists (x - y); rewrite -rmorphB.
by exists (x * y); rewrite -rmorphM.
Qed.

Canonical Qint_opprPred := OpprPred Qint_subring_closed.
Canonical Qint_addrPred := AddrPred Qint_subring_closed.
Canonical Qint_mulrPred := MulrPred Qint_subring_closed.
Canonical Qint_zmodPred := ZmodPred Qint_subring_closed.
Canonical Qint_semiringPred := SemiringPred Qint_subring_closed.
Canonical Qint_smulrPred := SmulrPred Qint_subring_closed.
Canonical Qint_subringPred := SubringPred Qint_subring_closed.

End QintPred.

Section QnatPred.

Definition Qnat := [qualify a x : rat | (x \is a Qint) && (0 <= x)].
Fact Qnat_key : pred_key Qnat. Proof. by []. Qed.
Canonical Qnat_keyed := KeyedQualifier Qnat_key.

Lemma Qnat_def x : (x \is a Qnat) = (x \is a Qint) && (0 <= x).
Proof. by []. Qed.

Lemma QnatP x : reflect (exists n : nat, x = n%:R) (x \in Qnat).
Proof.
rewrite Qnat_def; apply: (iffP idP) => [/andP []|[n ->]]; last first.
  by rewrite Qint_def pmulrn denq_int eqxx ler0z.
by move=> /QintP [] [] n ->; rewrite ?ler0z // => _; exists n.
Qed.

Fact Qnat_semiring_closed : semiring_closed Qnat.
Proof.
do 2?split; move => // x y; rewrite !Qnat_def => /andP[xQ hx] /andP[yQ hy].
  by rewrite rpredD // addr_ge0.
by rewrite rpredM // mulr_ge0.
Qed.

Canonical Qnat_addrPred := AddrPred Qnat_semiring_closed.
Canonical Qnat_mulrPred := MulrPred Qnat_semiring_closed.
Canonical Qnat_semiringPred := SemiringPred Qnat_semiring_closed.

End QnatPred.

Lemma natq_div m n : n %| m -> (m %/ n)%:R = m%:R / n%:R :> rat.
Proof. by apply: char0_natf_div; apply: char_num. Qed.

Section InRing.

Variable R : unitRingType.

Definition ratr x : R := (numq x)%:~R / (denq x)%:~R.

Lemma ratr_int z : ratr z%:~R = z%:~R.
Proof. by rewrite /ratr numq_int denq_int divr1. Qed.

Lemma ratr_nat n : ratr n%:R = n%:R.
Proof. exact: (ratr_int n). Qed.

Lemma rpred_rat S (ringS : @divringPred R S) (kS : keyed_pred ringS) a :
  ratr a \in kS.
Proof. by rewrite rpred_div ?rpred_int. Qed.

End InRing.

Section Fmorph.

Implicit Type rR : unitRingType.

Lemma fmorph_rat (aR : fieldType) rR (f : {rmorphism aR -> rR}) a :
  f (ratr _ a) = ratr _ a.
Proof. by rewrite fmorph_div !rmorph_int. Qed.

Lemma fmorph_eq_rat rR (f : {rmorphism rat -> rR}) : f =1 ratr _.
Proof. by move=> a; rewrite -{1}[a]divq_num_den fmorph_div !rmorph_int. Qed.

End Fmorph.

Section Linear.

Implicit Types (U V : lmodType rat) (A B : lalgType rat).

Lemma rat_linear U V (f : U -> V) : additive f -> linear f.
Proof.
move=> fB a u v; pose phi := Additive fB; rewrite [f _](raddfD phi).
congr (_ + _); rewrite -{2}[a]divq_num_den mulrC -scalerA.
apply: canRL (scalerK _) _; first by rewrite intr_eq0 denq_neq0.
by rewrite !scaler_int -raddfMz scalerMzl -mulrzr -numqE scaler_int raddfMz.
Qed.

Lemma rat_lrmorphism A B (f : A -> B) : rmorphism f -> lrmorphism f.
Proof. by case=> /rat_linear fZ fM; do ?split=> //; apply: fZ. Qed.

End Linear.

Section InPrealField.

Variable F : numFieldType.

Fact ratr_is_rmorphism : rmorphism (@ratr F).
Proof.
have injZtoQ: @injective rat int intr by apply: intr_inj.
have nz_den x: (denq x)%:~R != 0 :> F by rewrite intr_eq0 denq_eq0.
do 2?split; rewrite /ratr ?divr1 // => x y; last first.
  rewrite mulrC mulrAC; apply: canLR (mulKf (nz_den _)) _; rewrite !mulrA.
  do 2!apply: canRL (mulfK (nz_den _)) _; rewrite -!rmorphM; congr _%:~R.
  apply: injZtoQ; rewrite !rmorphM [x * y]lock /= !numqE -lock.
  by rewrite -!mulrA mulrA mulrCA -!mulrA (mulrCA y).
apply: (canLR (mulfK (nz_den _))); apply: (mulIf (nz_den x)).
rewrite mulrAC mulrBl divfK ?nz_den // mulrAC -!rmorphM.
apply: (mulIf (nz_den y)); rewrite mulrAC mulrBl divfK ?nz_den //.
rewrite -!(rmorphM, rmorphB); congr _%:~R; apply: injZtoQ.
rewrite !(rmorphM, rmorphB) [_ - _]lock /= -lock !numqE.
by rewrite (mulrAC y) -!mulrBl -mulrA mulrAC !mulrA.
Qed.

Canonical ratr_additive := Additive ratr_is_rmorphism.
Canonical ratr_rmorphism := RMorphism ratr_is_rmorphism.

Lemma ler_rat : {mono (@ratr F) : x y / x <= y}.
Proof.
move=> x y /=; case: (ratP x) => nx dx cndx; case: (ratP y) => ny dy cndy.
rewrite !fmorph_div /= !ratr_int !ler_pdivl_mulr ?ltr0z //.
by rewrite ![_ / _ * _]mulrAC !ler_pdivr_mulr ?ltr0z // -!rmorphM /= !ler_int.
Qed.

Lemma ltr_rat : {mono (@ratr F) : x y / x < y}.
Proof. exact: lerW_mono ler_rat. Qed.

Lemma ler0q x : (0 <= ratr F x) = (0 <= x).
Proof. by rewrite (_ : 0 = ratr F 0) ?ler_rat ?rmorph0. Qed.

Lemma lerq0 x : (ratr F x <= 0) = (x <= 0).
Proof. by rewrite (_ : 0 = ratr F 0) ?ler_rat ?rmorph0. Qed.

Lemma ltr0q x : (0 < ratr F x) = (0 < x).
Proof. by rewrite (_ : 0 = ratr F 0) ?ltr_rat ?rmorph0. Qed.

Lemma ltrq0 x : (ratr F x < 0) = (x < 0).
Proof. by rewrite (_ : 0 = ratr F 0) ?ltr_rat ?rmorph0. Qed.

Lemma ratr_sg x : ratr F (sgr x) = sgr (ratr F x).
Proof. by rewrite !sgr_def fmorph_eq0 ltrq0 rmorphMn rmorph_sign. Qed.

Lemma ratr_norm x : ratr F `|x| = `|ratr F x|.
Proof.
rewrite {2}[x]numEsign rmorphMsign normrMsign [`|ratr F _|]ger0_norm //.
by rewrite ler0q ?normr_ge0.
Qed.

End InPrealField.

Implicit Arguments ratr [[R]].

(* Conntecting rationals to the ring an field tactics *)

Ltac rat_to_ring :=
  rewrite -?[0%Q]/(0 : rat)%R -?[1%Q]/(1 : rat)%R
          -?[(_ - _)%Q]/(_ - _ : rat)%R -?[(_ / _)%Q]/(_ / _ : rat)%R
          -?[(_ + _)%Q]/(_ + _ : rat)%R -?[(_ * _)%Q]/(_ * _ : rat)%R
          -?[(- _)%Q]/(- _ : rat)%R -?[(_ ^-1)%Q]/(_ ^-1 : rat)%R /=.

Ltac ring_to_rat :=
  rewrite -?[0%R]/0%Q -?[1%R]/1%Q
          -?[(_ - _)%R]/(_ - _)%Q -?[(_ / _)%R]/(_ / _)%Q
          -?[(_ + _)%R]/(_ + _)%Q -?[(_ * _)%R]/(_ * _)%Q
          -?[(- _)%R]/(- _)%Q -?[(_ ^-1)%R]/(_ ^-1)%Q /=.

Lemma rat_ring_theory : (ring_theory 0%Q 1%Q addq mulq subq oppq eq).
Proof.
split => * //; rat_to_ring;
by rewrite ?(add0r, addrA, mul1r, mulrA, mulrDl, subrr) // (addrC, mulrC).
Qed.

Require setoid_ring.Field_theory setoid_ring.Field_tac.

Lemma rat_field_theory : 
  Field_theory.field_theory 0%Q 1%Q addq mulq subq oppq divq invq eq.
Proof.
split => //; first exact rat_ring_theory.
by move=> p /eqP p_neq0; rat_to_ring; rewrite mulVf.
Qed.

Add Field rat_field : rat_field_theory.