Timings for classfun.v

(* (c) Copyright 2006-2015 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrbool ssrfun eqtype ssrnat seq path div choice.
From mathcomp
Require Import fintype tuple finfun bigop prime ssralg poly finset.
From mathcomp
Require Import fingroup morphism perm automorphism quotient finalg action.
From mathcomp
Require Import gproduct zmodp commutator cyclic center pgroup sylow.
From mathcomp
Require Import matrix vector falgebra ssrnum algC algnum.

(******************************************************************************)
(* This file contains the basic theory of class functions:                    *)
(*          'CF(G) == the type of class functions on G : {group gT}, i.e.,    *)
(*                    which map gT to the type algC of complex algebraics,    *)
(*                    have support in G, and are constant on each conjugacy   *)
(*                    class of G. 'CF(G) implements the FalgType interface of *)
(*                    finite-dimensional F-algebras.                          *)
(*                    The identity 1 : 'CF(G) is the indicator function of G, *)
(*                    and (later) the principal character.                    *)
(*  --> The %CF scope (cfun_scope) is bound to the 'CF(_) types.              *)
(*       'CF(G)%VS == the (total) vector space of 'CF(G).                     *)
(*       'CF(G, A) == the subspace of functions in 'CF(G) with support in A.  *)
(*           phi x == the image of x : gT under phi : 'CF(G).                 *)
(*       #[phi]%CF == the multiplicative order of phi : 'CF(G).               *)
(*       cfker phi == the kernel of phi : 'CF(G); note that cfker phi <| G.   *)
(*   cfaithful phi <=> phi : 'CF(G) is faithful (has a trivial kernel).       *)
(*            '1_A == the indicator function of A as a function of 'CF(G).    *)
(*                    (Provided A <| G; G is determined by the context.)      *)
(*        phi^*%CF == the function conjugate to phi : 'CF(G).                 *)
(*     cfAut u phi == the function conjugate to phi by an algC-automorphism u *)
(*           phi^u    The notation "_ ^u" is only reserved; it is up to       *)
(*                    clients to set Notation "phi ^u" := (cfAut u phi).      *)
(*     '[phi, psi] == the convolution of phi, psi : 'CF(G) over G, normalised *)
(*   '[phi, psi]_G    by #|G| so that '[1, 1]_G = 1 (G is usually inferred).  *)
(*  cfdotr psi phi == '[phi, psi] (self-expanding).                           *)
(* '[phi], '[phi]_G == the squared norm '[phi, phi] of phi : 'CF(G).          *)
(* orthogonal R S <=> each phi in R : seq 'CF(G) is orthogonal to each psi in *)
(*                    S, i.e., '[phi, psi] = 0. As 'CF(G) coerces to seq, one *)
(*                    can write orthogonal phi S and orthogonal phi psi.      *)
(* pairwise_orthogonal S <=> the class functions in S are pairwise orthogonal *)
(*                    AND non-zero.                                           *)
(*   orthonormal S <=> S is pairwise orthogonal and all class functions in S  *)
(*                    have norm 1.                                            *)
(*    isometry tau <-> tau : 'CF(D) -> 'CF(R) is an isometry, mapping         *)
(*                    '[_, _]_D to '[_, _]_R.                                 *)
(* {in CD, isometry tau, to CR} <-> in the domain CD, tau is an isometry      *)
(*                    whose range is contained in CR.                         *)
(*     cfReal phi <=> phi is real, i.e., phi^* == phi.                        *)
(* cfAut_closed u S <-> S : seq 'CF(G) is closed under conjugation by u.      *)
(* cfConjC_closed S <-> S : seq 'CF(G) is closed under complex conjugation.   *)
(* conjC_subset S1 S2 <-> S1 : seq 'CF(G) represents a subset of S2 closed    *)
(*                    under complex conjugation.                              *)
(*                 := [/\ uniq S1, {subset S1 <= S2} & cfConjC_closed S1].    *)
(*     'Res[H] phi == the restriction of phi : 'CF(G) to a function of 'CF(H) *)
(*  'Res[H, G] phi    'Res[H] phi x = phi x if x \in H (when H \subset G),    *)
(*        'Res phi    'Res[H] phi x = 0 if x \notin H. The syntax variants    *)
(*                    allow H and G to be inferred; the default is to specify *)
(*                    H explicitly, and infer G from the type of phi.         *)
(*     'Ind[G] phi == the class function of 'CF(G) induced by phi : 'CF(H),   *)
(*  'Ind[G, H] phi    when H \subset G. As with 'Res phi, both G and H can    *)
(*        'Ind phi    be inferred, though usually G isn't.                    *)
(*     cfMorph phi == the class function in 'CF(G) that maps x to phi (f x),  *)
(*                    where phi : 'CF(f @* G), provided G \subset 'dom f.     *)
(* cfIsom isoGR phi == the class function in 'CF(R) that maps f x to phi x,   *)
(*                    given isoGR : isom G R f, f : {morphism G >-> rT} and   *)
(*                    phi : 'CF(G).                                           *)
(*   (phi %% H)%CF == special case of cfMorph phi, when phi : 'CF(G / H).     *)
(*    (phi / H)%CF == the class function in 'CF(G / H) that coincides with    *)
(*                    phi : 'CF(G) on cosets of H \subset cfker phi.          *)
(* For a group G that is a semidirect product (defG : K ><| H = G), we have   *)
(*    cfSdprod KxH phi == for phi : 'CF(H), the class function of 'CF(G) that *)
(*                        maps k * h to psi h when k \in K and h \in H.       *)
(* For a group G that is a direct product (with KxH : K \x H = G), we have    *)
(*    cfDprodl KxH phi == for phi : 'CF(K), the class function of 'CF(G) that *)
(*                        maps k * h to phi k when k \in K and h \in H.       *)
(*    cfDprodr KxH psi == for psi : 'CF(H), the class function of 'CF(G) that *)
(*                        maps k * h to psi h when k \in K and h \in H.       *)
(* cfDprod KxH phi psi == for phi : 'CF(K), psi : 'CF(H), the class function  *)
(*                        of 'CF(G) that maps k * h to phi k * psi h (this is *)
(*                        the product of the two functions above).            *)
(* Finally, given defG : \big[dprod/1]_(i | P i) A i = G, with G and A i      *)
(* groups and i ranges over a finType, we have                                *)
(*  cfBigdprodi defG phi == for phi : 'CF(A i) s.t. P i, the class function   *)
(*                        of 'CF(G) that maps x to phi x_i, where x_i is the  *)
(*                        (A i)-component of x : G.                           *)
(*   cfBigdprod defG phi == for phi : forall i, 'CF(A i), the class function  *)
(*                        of 'CF(G) that maps x to \prod_(i | P i) phi i x_i, *)
(*                        where x_i is the (A i)-component of x : G.          *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GroupScope GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Delimit Scope cfun_scope with CF.

Reserved Notation "''CF' ( G , A )" (at level 8, format "''CF' ( G ,  A )").
Reserved Notation "''CF' ( G )" (at level 8, format "''CF' ( G )").
Reserved Notation "''1_' G" (at level 8, G at level 2, format "''1_' G").
Reserved Notation "''Res[' H , G ]" (at level 8, only parsing).
Reserved Notation "''Res[' H ]" (at level 8, format "''Res[' H ]").
Reserved Notation "''Res'" (at level 8, only parsing).
Reserved Notation "''Ind[' G , H ]" (at level 8, only parsing).
Reserved Notation "''Ind[' G ]" (at level 8, format "''Ind[' G ]").
Reserved Notation "''Ind'" (at level 8, only parsing).
Reserved Notation "'[ phi , psi ]_ G" (at level 2, only parsing).
Reserved Notation "'[ phi , psi ]"
  (at level 2, format "'[hv' ''[' phi , '/ '  psi ] ']'").
Reserved Notation "'[ phi ]_ G" (at level 2, only parsing).
Reserved Notation "'[ phi ]" (at level 2, format "''[' phi ]").
Reserved Notation "phi ^u" (at level 3, format "phi ^u").

Section AlgC.
(* Arithmetic properties of group orders in the characteristic 0 field algC. *)

Variable (gT : finGroupType).
Implicit Types (G : {group gT}) (B : {set gT}).

Lemma neq0CG G : (#|G|)%:R != 0 :> algC. Proof. exact: natrG_neq0. Qed.
Lemma neq0CiG G B : (#|G : B|)%:R != 0 :> algC.
Proof. exact: natr_indexg_neq0. Qed.
Lemma gt0CG G : 0 < #|G|%:R :> algC. Proof. exact: natrG_gt0. Qed.
Lemma gt0CiG G B : 0 < #|G : B|%:R :> algC. Proof. exact: natr_indexg_gt0. Qed.

Lemma algC'G G : [char algC]^'.-group G.
Proof. by apply/pgroupP=> p _; rewrite inE /= char_num. Qed.

End AlgC.

Section Defs.

Variable gT : finGroupType.

Definition is_class_fun (B : {set gT}) (f : {ffun gT -> algC}) :=
  [forall x, forall y in B, f (x ^ y) == f x] && (support f \subset B).

Lemma intro_class_fun (G : {group gT}) f :
    {in G &, forall x y, f (x ^ y) = f x} ->
    (forall x, x \notin G -> f x = 0) ->
  is_class_fun G (finfun f).
Proof.
move=> fJ Gf; apply/andP; split; last first.
  by apply/supportP=> x notAf; rewrite ffunE Gf.
apply/'forall_eqfun_inP=> x y Gy; rewrite !ffunE.
by have [/fJ-> // | notGx] := boolP (x \in G); rewrite !Gf ?groupJr.
Qed.

Variable B : {set gT}.
Local Notation G := <<B>>.

Record classfun : predArgType :=
  Classfun {cfun_val; _ : is_class_fun G cfun_val}.
Implicit Types phi psi xi : classfun.
(* The default expansion lemma cfunE requires key = 0. *)
Fact classfun_key : unit. Proof. by []. Qed.
Definition Cfun := locked_with classfun_key (fun flag : nat => Classfun).

Canonical cfun_subType := Eval hnf in [subType for cfun_val].
Definition cfun_eqMixin := Eval hnf in [eqMixin of classfun by <:].
Canonical cfun_eqType := Eval hnf in EqType classfun cfun_eqMixin.
Definition cfun_choiceMixin := Eval hnf in [choiceMixin of classfun by <:].
Canonical cfun_choiceType := Eval hnf in ChoiceType classfun cfun_choiceMixin.

Definition fun_of_cfun phi := cfun_val phi : gT -> algC.
Coercion fun_of_cfun : classfun >-> Funclass.

Lemma cfunElock k f fP : @Cfun k (finfun f) fP =1 f.
Proof. by rewrite locked_withE; apply: ffunE. Qed.

Lemma cfunE f fP : @Cfun 0 (finfun f) fP =1 f.
Proof. exact: cfunElock. Qed.

Lemma cfunP phi psi : phi =1 psi <-> phi = psi.
Proof. by split=> [/ffunP/val_inj | ->]. Qed.

Lemma cfun0gen phi x : x \notin G -> phi x = 0.
Proof. by case: phi => f fP; case: (andP fP) => _ /supportP; apply. Qed.

Lemma cfun_in_genP phi psi : {in G, phi =1 psi} -> phi = psi.
Proof.
move=> eq_phi; apply/cfunP=> x.
by have [/eq_phi-> // | notAx] := boolP (x \in G); rewrite !cfun0gen.
Qed.

Lemma cfunJgen phi x y : y \in G -> phi (x ^ y) = phi x.
Proof.
case: phi => f fP Gy; apply/eqP.
by case: (andP fP) => /'forall_forall_inP->.
Qed.

Fact cfun_zero_subproof : is_class_fun G (0 : {ffun _}).
Proof. exact: intro_class_fun. Qed.
Definition cfun_zero := Cfun 0 cfun_zero_subproof.

Fact cfun_comp_subproof f phi :
  f 0 = 0 -> is_class_fun G [ffun x => f (phi x)].
Proof.
by move=> f0; apply: intro_class_fun => [x y _ /cfunJgen | x /cfun0gen] ->.
Qed.
Definition cfun_comp f f0 phi := Cfun 0 (@cfun_comp_subproof f phi f0).
Definition cfun_opp := cfun_comp (oppr0 _).

Fact cfun_add_subproof phi psi : is_class_fun G [ffun x => phi x + psi x].
Proof.
apply: intro_class_fun => [x y Gx Gy | x notGx]; rewrite ?cfunJgen //.
by rewrite !cfun0gen ?add0r.
Qed.
Definition cfun_add phi psi := Cfun 0 (cfun_add_subproof phi psi).

Fact cfun_indicator_subproof (A : {set gT}) :
  is_class_fun G [ffun x => ((x \in G) && (x ^: G \subset A))%:R].
Proof.
apply: intro_class_fun => [x y Gx Gy | x /negbTE/= -> //].
by rewrite groupJr ?classGidl.
Qed.
Definition cfun_indicator A := Cfun 1 (cfun_indicator_subproof A).
Local Notation "''1_' A" := (cfun_indicator A) : ring_scope.

Lemma cfun1Egen x : '1_G x = (x \in G)%:R.
Proof. by rewrite cfunElock andb_idr // => /class_subG->. Qed.

Fact cfun_mul_subproof phi psi : is_class_fun G [ffun x => phi x * psi x].
Proof.
apply: intro_class_fun => [x y Gx Gy | x notGx]; rewrite ?cfunJgen //.
by rewrite cfun0gen ?mul0r.
Qed.
Definition cfun_mul phi psi := Cfun 0 (cfun_mul_subproof phi psi).

Definition cfun_unit := [pred phi : classfun | [forall x in G, phi x != 0]].
Definition cfun_inv phi :=
  if phi \in cfun_unit then cfun_comp (invr0 _) phi else phi.

Definition cfun_scale a := cfun_comp (mulr0 a).

Fact cfun_addA : associative cfun_add.
Proof. by move=> phi psi xi; apply/cfunP=> x; rewrite !cfunE addrA. Qed.
Fact cfun_addC : commutative cfun_add.
Proof. by move=> phi psi; apply/cfunP=> x; rewrite !cfunE addrC. Qed.
Fact cfun_add0 : left_id cfun_zero cfun_add.
Proof. by move=> phi; apply/cfunP=> x; rewrite !cfunE add0r. Qed.
Fact cfun_addN : left_inverse cfun_zero cfun_opp cfun_add.
Proof. by move=> phi; apply/cfunP=> x; rewrite !cfunE addNr. Qed.

Definition cfun_zmodMixin := ZmodMixin cfun_addA cfun_addC cfun_add0 cfun_addN.
Canonical cfun_zmodType := ZmodType classfun cfun_zmodMixin.

Lemma muln_cfunE phi n x : (phi *+ n) x = phi x *+ n.
Proof. by elim: n => [|n IHn]; rewrite ?mulrS !cfunE ?IHn. Qed.

Lemma sum_cfunE I r (P : pred I) (phi : I -> classfun) x :
  (\sum_(i <- r | P i) phi i) x = \sum_(i <- r | P i) (phi i) x.
Proof. by elim/big_rec2: _ => [|i _ psi _ <-]; rewrite cfunE. Qed.

Fact cfun_mulA : associative cfun_mul.
Proof. by move=> phi psi xi; apply/cfunP=> x; rewrite !cfunE mulrA. Qed.
Fact cfun_mulC : commutative cfun_mul.
Proof. by move=> phi psi; apply/cfunP=> x; rewrite !cfunE mulrC. Qed.
Fact cfun_mul1 : left_id '1_G cfun_mul.
Proof.
by move=> phi; apply: cfun_in_genP => x Gx; rewrite !cfunE cfun1Egen Gx mul1r.
Qed.
Fact cfun_mulD : left_distributive cfun_mul cfun_add.
Proof. by move=> phi psi xi; apply/cfunP=> x; rewrite !cfunE mulrDl. Qed.
Fact cfun_nz1 : '1_G != 0.
Proof.
by apply/eqP=> /cfunP/(_ 1%g)/eqP; rewrite cfun1Egen cfunE group1 oner_eq0.
Qed.

Definition cfun_ringMixin :=
  ComRingMixin cfun_mulA cfun_mulC cfun_mul1 cfun_mulD cfun_nz1.
Canonical cfun_ringType := RingType classfun cfun_ringMixin.
Canonical cfun_comRingType := ComRingType classfun cfun_mulC.

Lemma expS_cfunE phi n x : (phi ^+ n.+1) x = phi x ^+ n.+1.
Proof. by elim: n => //= n IHn; rewrite !cfunE IHn. Qed.

Fact cfun_mulV : {in cfun_unit, left_inverse 1 cfun_inv *%R}.
Proof.
move=> phi Uphi; rewrite /cfun_inv Uphi; apply/cfun_in_genP=> x Gx.
by rewrite !cfunE cfun1Egen Gx mulVf ?(forall_inP Uphi).
Qed.
Fact cfun_unitP phi psi : psi * phi = 1 -> phi \in cfun_unit.
Proof.
move/cfunP=> phiK; apply/forall_inP=> x Gx; rewrite -unitfE; apply/unitrP.
by exists (psi x); have:= phiK x; rewrite !cfunE cfun1Egen Gx mulrC.
Qed.
Fact cfun_inv0id : {in [predC cfun_unit], cfun_inv =1 id}.
Proof. by rewrite /cfun_inv => phi /negbTE/= ->. Qed.

Definition cfun_unitMixin := ComUnitRingMixin cfun_mulV cfun_unitP cfun_inv0id.
Canonical cfun_unitRingType := UnitRingType classfun cfun_unitMixin.
Canonical cfun_comUnitRingType := [comUnitRingType of classfun].

Fact cfun_scaleA a b phi :
  cfun_scale a (cfun_scale b phi) = cfun_scale (a * b) phi.
Proof. by apply/cfunP=> x; rewrite !cfunE mulrA. Qed.
Fact cfun_scale1 : left_id 1 cfun_scale.
Proof. by move=> phi; apply/cfunP=> x; rewrite !cfunE mul1r. Qed.
Fact cfun_scaleDr : right_distributive cfun_scale +%R.
Proof. by move=> a phi psi; apply/cfunP=> x; rewrite !cfunE mulrDr. Qed.
Fact cfun_scaleDl phi : {morph cfun_scale^~ phi : a b / a + b}.
Proof. by move=> a b; apply/cfunP=> x; rewrite !cfunE mulrDl. Qed.

Definition cfun_lmodMixin :=
  LmodMixin cfun_scaleA cfun_scale1 cfun_scaleDr cfun_scaleDl.
Canonical cfun_lmodType := LmodType algC classfun cfun_lmodMixin.

Fact cfun_scaleAl a phi psi : a *: (phi * psi) = (a *: phi) * psi.
Proof. by apply/cfunP=> x; rewrite !cfunE mulrA. Qed.
Fact cfun_scaleAr a phi psi : a *: (phi * psi) = phi * (a *: psi).
Proof. by rewrite !(mulrC phi) cfun_scaleAl. Qed.

Canonical cfun_lalgType := LalgType algC classfun cfun_scaleAl.
Canonical cfun_algType := AlgType algC classfun cfun_scaleAr.
Canonical cfun_unitAlgType := [unitAlgType algC of classfun].

Section Automorphism.

Variable u : {rmorphism algC -> algC}.

Definition cfAut := cfun_comp (rmorph0 u).

Lemma cfAut_cfun1i A : cfAut '1_A = '1_A.
Proof. by apply/cfunP=> x; rewrite !cfunElock rmorph_nat. Qed.

Lemma cfAutZ a phi : cfAut (a *: phi) = u a *: cfAut phi.
Proof. by apply/cfunP=> x; rewrite !cfunE rmorphM. Qed.

Lemma cfAut_is_rmorphism : rmorphism cfAut.
Proof.
by do 2?split=> [phi psi|]; apply/cfunP=> x;
   rewrite ?cfAut_cfun1i // !cfunE (rmorphB, rmorphM).
Qed.
Canonical cfAut_additive := Additive cfAut_is_rmorphism.
Canonical cfAut_rmorphism := RMorphism cfAut_is_rmorphism.

Lemma cfAut_cfun1 : cfAut 1 = 1. Proof. exact: rmorph1. Qed.

Lemma cfAut_scalable : scalable_for (u \; *:%R) cfAut.
Proof. by move=> a phi; apply/cfunP=> x; rewrite !cfunE rmorphM. Qed.
Canonical cfAut_linear := AddLinear cfAut_scalable.
Canonical cfAut_lrmorphism := [lrmorphism of cfAut].

Definition cfAut_closed (S : seq classfun) :=
  {in S, forall phi, cfAut phi \in S}.

End Automorphism.

Definition cfReal phi := cfAut conjC phi == phi.

Definition cfConjC_subset (S1 S2 : seq classfun) :=
  [/\ uniq S1, {subset S1 <= S2} & cfAut_closed conjC S1].

Fact cfun_vect_iso : Vector.axiom #|classes G| classfun.
Proof.
exists (fun phi => \row_i phi (repr (enum_val i))) => [a phi psi|].
  by apply/rowP=> i; rewrite !(mxE, cfunE).
set n := #|_|; pose eK x : 'I_n := enum_rank_in (classes1 _) (x ^: G).
have rV2vP v : is_class_fun G [ffun x => v (eK x) *+ (x \in G)].
  apply: intro_class_fun => [x y Gx Gy | x /negbTE/=-> //].
  by rewrite groupJr // /eK classGidl.
exists (fun v : 'rV_n => Cfun 0 (rV2vP (v 0))) => [phi | v].
  apply/cfun_in_genP=> x Gx; rewrite cfunE Gx mxE enum_rankK_in ?mem_classes //.
  by have [y Gy ->] := repr_class <<B>> x; rewrite cfunJgen.
apply/rowP=> i; rewrite mxE cfunE; have /imsetP[x Gx def_i] := enum_valP i.
rewrite def_i; have [y Gy ->] := repr_class <<B>> x.
by rewrite groupJ // /eK classGidl // -def_i enum_valK_in.
Qed.
Definition cfun_vectMixin := VectMixin cfun_vect_iso.
Canonical cfun_vectType := VectType algC classfun cfun_vectMixin.
Canonical cfun_FalgType := [FalgType algC of classfun].

Definition cfun_base A : #|classes B ::&: A|.-tuple classfun :=
  [tuple of [seq '1_xB | xB in classes B ::&: A]].
Definition classfun_on A := <<cfun_base A>>%VS.

Definition cfdot phi psi := #|B|%:R^-1 * \sum_(x in B) phi x * (psi x)^*.
Definition cfdotr_head k psi phi := let: tt := k in cfdot phi psi.
Definition cfnorm_head k phi := let: tt := k in cfdot phi phi.

Coercion seq_of_cfun phi := [:: phi].

Definition cforder phi := \big[lcmn/1%N]_(x in <<B>>) #[phi x]%C.

End Defs.

Bind Scope cfun_scope with classfun.

Arguments Scope classfun [_ group_scope].
Arguments Scope classfun_on [_ group_scope group_scope].
Arguments Scope cfun_indicator [_ group_scope].
Arguments Scope cfAut [_ group_scope _ cfun_scope].
Arguments Scope cfReal [_ group_scope cfun_scope].
Arguments Scope cfdot [_ group_scope cfun_scope cfun_scope].
Arguments Scope cfdotr_head [_ group_scope _ cfun_scope cfun_scope].
Arguments Scope cfdotr_head [_ group_scope _ cfun_scope].

Notation "''CF' ( G )" := (classfun G) : type_scope.
Notation "''CF' ( G )" := (@fullv _ (cfun_vectType G)) : vspace_scope.
Notation "''1_' A" := (cfun_indicator _ A) : ring_scope.
Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope.
Notation "1" := (@GRing.one (cfun_ringType _)) (only parsing) : cfun_scope.

Notation "phi ^*" := (cfAut conjC phi) : cfun_scope.
Notation cfConjC_closed := (cfAut_closed conjC).
Prenex Implicits cfReal.
(* Workaround for overeager projection reduction. *)
Notation eqcfP := (@eqP (cfun_eqType _) _ _) (only parsing).

Notation "#[ phi ]" := (cforder phi) : cfun_scope.
Notation "''[' u , v ]_ G":=  (@cfdot _ G u v) (only parsing) : ring_scope.
Notation "''[' u , v ]" := (cfdot u v) : ring_scope.
Notation "''[' u ]_ G" := '[u, u]_G (only parsing) : ring_scope.
Notation "''[' u ]" := '[u, u] : ring_scope.
Notation cfdotr := (cfdotr_head tt).
Notation cfnorm := (cfnorm_head tt).

Section Predicates.

Variables (gT rT : finGroupType) (D : {set gT}) (R : {set rT}).
Implicit Types (phi psi : 'CF(D)) (S : seq 'CF(D)) (tau : 'CF(D) -> 'CF(R)).

Definition cfker phi := [set x in D | [forall y, phi (x * y)%g == phi y]].

Definition cfaithful phi := cfker phi \subset [1].

Definition ortho_rec S1 S2 :=
  all [pred phi | all [pred psi | '[phi, psi] == 0] S2] S1.

Fixpoint pair_ortho_rec S := 
  if S is psi :: S' then ortho_rec psi S' && pair_ortho_rec S' else true.

(* We exclude 0 from pairwise orthogonal sets. *)
Definition pairwise_orthogonal S := (0 \notin S) && pair_ortho_rec S.

Definition orthonormal S := all [pred psi | '[psi] == 1] S && pair_ortho_rec S.

Definition isometry tau := forall phi psi, '[tau phi, tau psi] = '[phi, psi].

Definition isometry_from_to mCFD tau mCFR :=
   prop_in2 mCFD (inPhantom (isometry tau))
  /\ prop_in1 mCFD (inPhantom (forall phi, in_mem (tau phi) mCFR)).

End Predicates.

(* Outside section so the nosimpl does not get "cooked" out. *)
Definition orthogonal gT D S1 S2 := nosimpl (@ortho_rec gT D S1 S2).

Arguments Scope cfker [_ group_scope cfun_scope].
Arguments Scope cfaithful [_ group_scope cfun_scope].
Arguments Scope orthogonal [_ group_scope cfun_scope cfun_scope].
Arguments Scope pairwise_orthogonal [_ group_scope cfun_scope].
Arguments Scope orthonormal [_ group_scope cfun_scope].
Arguments Scope isometry [_ _ group_scope group_scope cfun_scope].

Notation "{ 'in' CFD , 'isometry' tau , 'to' CFR }" :=
    (isometry_from_to (mem CFD) tau (mem CFR))
  (at level 0, format "{ 'in'  CFD ,  'isometry'  tau ,  'to'  CFR }")
     : type_scope.

Section ClassFun. 

Variables (gT : finGroupType) (G : {group gT}).
Implicit Types (A B : {set gT}) (H K : {group gT}) (phi psi xi : 'CF(G)).

Local Notation "''1_' A" := (cfun_indicator G A).

Lemma cfun0 phi x : x \notin G -> phi x = 0.
Proof. by rewrite -{1}(genGid G) => /(cfun0gen phi). Qed.

Lemma support_cfun phi : support phi \subset G.
Proof. by apply/subsetP=> g; apply: contraR => /cfun0->. Qed.

Lemma cfunJ phi x y : y \in G -> phi (x ^ y) = phi x.
Proof. by rewrite -{1}(genGid G) => /(cfunJgen phi)->. Qed.

Lemma cfun_repr phi x : phi (repr (x ^: G)) = phi x.
Proof. by have [y Gy ->] := repr_class G x; apply: cfunJ. Qed.

Lemma cfun_inP phi psi : {in G, phi =1 psi} -> phi = psi.
Proof. by rewrite -{1}genGid => /cfun_in_genP. Qed.

Lemma cfuniE A x : A <| G -> '1_A x = (x \in A)%:R.
Proof.
case/andP=> sAG nAG; rewrite cfunElock genGid.
by rewrite class_sub_norm // andb_idl // => /(subsetP sAG).
Qed.

Lemma support_cfuni A : A <| G -> support '1_A =i A.
Proof. by move=> nsAG x; rewrite !inE cfuniE // pnatr_eq0 -lt0n lt0b. Qed.

Lemma eq_mul_cfuni A phi : A <| G -> {in A, phi * '1_A =1 phi}.
Proof. by move=> nsAG x Ax; rewrite cfunE cfuniE // Ax mulr1. Qed.

Lemma eq_cfuni A : A <| G -> {in A, '1_A =1 (1 : 'CF(G))}.
Proof. by rewrite -['1_A]mul1r; apply: eq_mul_cfuni. Qed.

Lemma cfuniG : '1_G = 1.
Proof. by rewrite -[G in '1_G]genGid. Qed.

Lemma cfun1E g : (1 : 'CF(G)) g = (g \in G)%:R.
Proof. by rewrite -cfuniG cfuniE. Qed.

Lemma cfun11 : (1 : 'CF(G)) 1%g = 1.
Proof. by rewrite cfun1E group1. Qed.

Lemma prod_cfunE I r (P : pred I) (phi : I -> 'CF(G)) x :
  x \in G -> (\prod_(i <- r | P i) phi i) x = \prod_(i <- r | P i) (phi i) x.
Proof.
by move=> Gx; elim/big_rec2: _ => [|i _ psi _ <-]; rewrite ?cfunE ?cfun1E ?Gx.
Qed.

Lemma exp_cfunE phi n x : x \in G -> (phi ^+ n) x = phi x ^+ n.
Proof. by rewrite -[n]card_ord -!prodr_const; apply: prod_cfunE. Qed.

Lemma mul_cfuni A B : '1_A * '1_B = '1_(A :&: B) :> 'CF(G).
Proof.
apply/cfunP=> g; rewrite !cfunElock -natrM mulnb subsetI.
by rewrite andbCA !andbA andbb.
Qed.

Lemma cfun_classE x y : '1_(x ^: G) y = ((x \in G) && (y \in x ^: G))%:R.
Proof.
rewrite cfunElock genGid class_sub_norm ?class_norm //; congr (_ : bool)%:R.
by apply: andb_id2r => /imsetP[z Gz ->]; rewrite groupJr.
Qed.

Lemma cfun_on_sum A :
  'CF(G, A) = (\sum_(xG in classes G | xG \subset A) <['1_xG]>)%VS.
Proof.
rewrite ['CF(G, A)]span_def big_map big_filter.
by apply: eq_bigl => xG; rewrite !inE.
Qed.

Lemma cfun_onP A phi :
  reflect (forall x, x \notin A -> phi x = 0) (phi \in 'CF(G, A)).
Proof.
apply: (iffP idP) => [/coord_span-> x notAx | Aphi].
  set b := cfun_base G A; rewrite sum_cfunE big1 // => i _; rewrite cfunE.
  have /mapP[xG]: b`_i \in b by rewrite -tnth_nth mem_tnth.
  rewrite mem_enum => /setIdP[/imsetP[y Gy ->] Ay] ->.
  by rewrite cfun_classE Gy (contraNF (subsetP Ay x)) ?mulr0.
suffices <-: \sum_(xG in classes G) phi (repr xG) *: '1_xG = phi.
  apply: memv_suml => _ /imsetP[x Gx ->]; rewrite rpredZeq cfun_repr.
  have [s_xG_A | /subsetPn[_ /imsetP[y Gy ->]]] := boolP (x ^: G \subset A).
    by rewrite cfun_on_sum [_ \in _](sumv_sup (x ^: G)) ?mem_classes ?orbT.
  by move/Aphi; rewrite cfunJ // => ->; rewrite eqxx.
apply/cfun_inP=> x Gx; rewrite sum_cfunE (bigD1 (x ^: G)) ?mem_classes //=.
rewrite cfunE cfun_repr cfun_classE Gx class_refl mulr1.
rewrite big1 ?addr0 // => _ /andP[/imsetP[y Gy ->]]; apply: contraNeq.
rewrite cfunE cfun_repr cfun_classE Gy mulf_eq0 => /norP[_].
by rewrite pnatr_eq0 -lt0n lt0b => /class_eqP->.
Qed.
Implicit Arguments cfun_onP [A phi].

Lemma cfun_on0 A phi x : phi \in 'CF(G, A) -> x \notin A -> phi x = 0.
Proof. by move/cfun_onP; apply. Qed.

Lemma sum_by_classes (R : ringType) (F : gT -> R) :
    {in G &, forall g h, F (g ^ h) = F g} ->
  \sum_(g in G) F g = \sum_(xG in classes G) #|xG|%:R * F (repr xG).
Proof.
move=> FJ; rewrite {1}(partition_big _  _ ((@mem_classes gT)^~ G)) /=.
apply: eq_bigr => _ /imsetP[x Gx ->]; have [y Gy ->] := repr_class G x.
rewrite mulr_natl -sumr_const FJ {y Gy}//; apply/esym/eq_big=> y /=.
  apply/idP/andP=> [xGy | [Gy /eqP<-]]; last exact: class_refl.
  by rewrite (class_eqP xGy) (subsetP (class_subG Gx (subxx _))).
by case/imsetP=> z Gz ->; rewrite FJ.
Qed.

Lemma cfun_base_free A : free (cfun_base G A).
Proof.
have b_i (i : 'I_#|classes G ::&: A|) : (cfun_base G A)`_i = '1_(enum_val i).
  by rewrite /enum_val -!tnth_nth tnth_map.
apply/freeP => s S0 i; move/cfunP/(_ (repr (enum_val i))): S0.
rewrite sum_cfunE (bigD1 i) //= big1 ?addr0 => [|j].
  rewrite b_i !cfunE; have /setIdP[/imsetP[x Gx ->] _] := enum_valP i.
  by rewrite cfun_repr cfun_classE Gx class_refl mulr1.
apply: contraNeq; rewrite b_i !cfunE mulf_eq0 => /norP[_].
rewrite -(inj_eq enum_val_inj).
have /setIdP[/imsetP[x _ ->] _] := enum_valP i; rewrite cfun_repr.
have /setIdP[/imsetP[y Gy ->] _] := enum_valP j; rewrite cfun_classE Gy.
by rewrite pnatr_eq0 -lt0n lt0b => /class_eqP->.
Qed.

Lemma dim_cfun : \dim 'CF(G) = #|classes G|.
Proof. by rewrite dimvf /Vector.dim /= genGid. Qed.

Lemma dim_cfun_on A : \dim 'CF(G, A) = #|classes G ::&: A|.
Proof. by rewrite (eqnP (cfun_base_free A)) size_tuple. Qed.

Lemma dim_cfun_on_abelian A : abelian G -> A \subset G -> \dim 'CF(G, A) = #|A|.
Proof.
move/abelian_classP=> cGG sAG; rewrite -(card_imset _ set1_inj) dim_cfun_on.
apply/eq_card=> xG; rewrite !inE.
apply/andP/imsetP=> [[/imsetP[x Gx ->] Ax] | [x Ax ->]] {xG}.
  by rewrite cGG ?sub1set // in Ax *; exists x.
by rewrite -{1}(cGG x) ?mem_classes ?(subsetP sAG) ?sub1set.
Qed.

Lemma cfuni_on A : '1_A \in 'CF(G, A).
Proof.
apply/cfun_onP=> x notAx; rewrite cfunElock genGid.
by case: andP => // [[_ s_xG_A]]; rewrite (subsetP s_xG_A) ?class_refl in notAx.
Qed.

Lemma mul_cfuni_on A phi : phi * '1_A \in 'CF(G, A).
Proof.
by apply/cfun_onP=> x /(cfun_onP (cfuni_on A)) Ax0; rewrite cfunE Ax0 mulr0.
Qed.

Lemma cfun_onE phi A : (phi \in 'CF(G, A)) = (support phi \subset A).
Proof. exact: (sameP cfun_onP supportP). Qed.

Lemma cfun_onT phi : phi \in 'CF(G, [set: gT]).
Proof. by rewrite cfun_onE. Qed.

Lemma cfun_onD1 phi A :
  (phi \in 'CF(G, A^#)) = (phi \in 'CF(G, A)) && (phi 1%g == 0).
Proof.
by rewrite !cfun_onE -!(eq_subset (in_set (support _))) subsetD1 !inE negbK.
Qed.

Lemma cfun_onG phi : phi \in 'CF(G, G).
Proof. by rewrite cfun_onE support_cfun. Qed.

Lemma cfunD1E phi : (phi \in 'CF(G, G^#)) = (phi 1%g == 0).
Proof. by rewrite cfun_onD1 cfun_onG. Qed.

Lemma cfunGid : 'CF(G, G) = 'CF(G)%VS.
Proof. by apply/vspaceP=> phi; rewrite cfun_onG memvf. Qed.

Lemma cfun_onS A B phi : B \subset A -> phi \in 'CF(G, B) -> phi \in 'CF(G, A).
Proof. by rewrite !cfun_onE => sBA /subset_trans->. Qed.

Lemma cfun_complement A :
  A <| G -> ('CF(G, A) + 'CF(G, G :\: A)%SET = 'CF(G))%VS.
Proof.
case/andP=> sAG nAG; rewrite -cfunGid [rhs in _ = rhs]cfun_on_sum.
rewrite (bigID (fun B => B \subset A)) /=.
congr (_ + _)%VS; rewrite cfun_on_sum; apply: eq_bigl => /= xG.
  rewrite andbAC; apply/esym/andb_idr=> /andP[/imsetP[x Gx ->] _].
  by rewrite class_subG.
rewrite -andbA; apply: andb_id2l => /imsetP[x Gx ->].
by rewrite !class_sub_norm ?normsD ?normG // inE andbC.
Qed.

Lemma cfConjCE phi x : (phi^*)%CF x = (phi x)^*.
Proof. by rewrite cfunE. Qed.

Lemma cfConjCK : involutive (fun phi => phi^*)%CF.
Proof. by move=> phi; apply/cfunP=> x; rewrite !cfunE conjCK. Qed.

Lemma cfConjC_cfun1 : (1^*)%CF = 1 :> 'CF(G).
Proof. exact: rmorph1. Qed.

(* Class function kernel and faithful class functions *)

Fact cfker_is_group phi : group_set (cfker phi).
Proof.
apply/group_setP; split=> [|x y]; rewrite !inE ?group1.
  by apply/forallP=> y; rewrite mul1g.
case/andP=> Gx /forallP-Kx /andP[Gy /forallP-Ky]; rewrite groupM //.
by apply/forallP=> z; rewrite -mulgA (eqP (Kx _)) Ky.
Qed.
Canonical cfker_group phi := Group (cfker_is_group phi).

Lemma cfker_sub phi : cfker phi \subset G.
Proof. by rewrite /cfker setIdE subsetIl. Qed.

Lemma cfker_norm phi : G \subset 'N(cfker phi).
Proof.
apply/subsetP=> z Gz; have phiJz := cfunJ phi _ (groupVr Gz).
rewrite inE; apply/subsetP=> _ /imsetP[x /setIdP[Gx /forallP-Kx] ->].
rewrite inE groupJ //; apply/forallP=> y.
by rewrite -(phiJz y) -phiJz conjMg conjgK Kx.
Qed.

Lemma cfker_normal phi : cfker phi <| G.
Proof. by rewrite /normal cfker_sub cfker_norm. Qed.

Lemma cfkerMl phi x y : x \in cfker phi -> phi (x * y)%g = phi y.
Proof. by case/setIdP=> _ /eqfunP->. Qed.

Lemma cfkerMr phi x y : x \in cfker phi -> phi (y * x)%g = phi y.
Proof.
by move=> Kx; rewrite conjgC cfkerMl ?cfunJ ?(subsetP (cfker_sub phi)).
Qed.

Lemma cfker1 phi x : x \in cfker phi -> phi x = phi 1%g.
Proof. by move=> Kx; rewrite -[x]mulg1 cfkerMl. Qed.

Lemma cfker_cfun0 : @cfker _ G 0 = G.
Proof.
apply/setP=> x; rewrite !inE andb_idr // => Gx; apply/forallP=> y.
by rewrite !cfunE.
Qed.

Lemma cfker_add phi psi : cfker phi :&: cfker psi \subset cfker (phi + psi).
Proof.
apply/subsetP=> x /setIP[Kphi_x Kpsi_x]; have [Gx _] := setIdP Kphi_x.
by rewrite inE Gx; apply/forallP=> y; rewrite !cfunE !cfkerMl.
Qed.

Lemma cfker_sum I r (P : pred I) (Phi : I -> 'CF(G)) :
  G :&: \bigcap_(i <- r | P i) cfker (Phi i)
   \subset cfker (\sum_(i <- r | P i) Phi i).
Proof.
elim/big_rec2: _ => [|i K psi Pi sK_psi]; first by rewrite setIT cfker_cfun0.
by rewrite setICA; apply: subset_trans (setIS _ sK_psi) (cfker_add _ _).
Qed.

Lemma cfker_scale a phi : cfker phi \subset cfker (a *: phi).
Proof.
apply/subsetP=> x Kphi_x; have [Gx _] := setIdP Kphi_x.
by rewrite inE Gx; apply/forallP=> y; rewrite !cfunE cfkerMl.
Qed.

Lemma cfker_scale_nz a phi : a != 0 -> cfker (a *: phi) = cfker phi.
Proof.
move=> nz_a; apply/eqP.
by rewrite eqEsubset -{2}(scalerK nz_a phi) !cfker_scale.
Qed.

Lemma cfker_opp phi : cfker (- phi) = cfker phi.
Proof. by rewrite -scaleN1r cfker_scale_nz // oppr_eq0 oner_eq0. Qed.

Lemma cfker_cfun1 : @cfker _ G 1 = G.
Proof.
apply/setP=> x; rewrite !inE andb_idr // => Gx; apply/forallP=> y.
by rewrite !cfun1E groupMl.
Qed.

Lemma cfker_mul phi psi : cfker phi :&: cfker psi \subset cfker (phi * psi).
Proof.
apply/subsetP=> x /setIP[Kphi_x Kpsi_x]; have [Gx _] := setIdP Kphi_x.
by rewrite inE Gx; apply/forallP=> y; rewrite !cfunE !cfkerMl.
Qed.

Lemma cfker_prod I r (P : pred I) (Phi : I -> 'CF(G)) :
  G :&: \bigcap_(i <- r | P i) cfker (Phi i)
   \subset cfker (\prod_(i <- r | P i) Phi i).
Proof.
elim/big_rec2: _ => [|i K psi Pi sK_psi]; first by rewrite setIT cfker_cfun1.
by rewrite setICA; apply: subset_trans (setIS _ sK_psi) (cfker_mul _ _).
Qed.

Lemma cfaithfulE phi : cfaithful phi = (cfker phi \subset [1]).
Proof. by []. Qed.

End ClassFun.

Arguments Scope classfun_on [_ group_scope group_scope].
Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope.

Implicit Arguments cfun_onP [gT G A phi].
Hint Resolve cfun_onT.

Section DotProduct.

Variable (gT : finGroupType) (G : {group gT}).
Implicit Types (M : {group gT}) (phi psi xi : 'CF(G)) (R S : seq 'CF(G)).

Lemma cfdotE phi psi :
  '[phi, psi] = #|G|%:R^-1 * \sum_(x in G) phi x * (psi x)^*.
Proof. by []. Qed.

Lemma cfdotElr A B phi psi :
     phi \in 'CF(G, A) -> psi \in 'CF(G, B) ->
  '[phi, psi] = #|G|%:R^-1 * \sum_(x in A :&: B) phi x * (psi x)^*.
Proof.
move=> Aphi Bpsi; rewrite (big_setID G) cfdotE (big_setID (A :&: B)) setIC /=.
congr (_ * (_ + _)); rewrite !big1 // => x /setDP[_].
  by move/cfun0->; rewrite mul0r.
rewrite inE; case/nandP=> notABx; first by rewrite (cfun_on0 Aphi) ?mul0r.
by rewrite (cfun_on0 Bpsi) // rmorph0 mulr0.
Qed.

Lemma cfdotEl A phi psi :
     phi \in 'CF(G, A) ->
  '[phi, psi] = #|G|%:R^-1 * \sum_(x in A) phi x * (psi x)^*.
Proof. by move=> Aphi; rewrite (cfdotElr Aphi (cfun_onT psi)) setIT. Qed.

Lemma cfdotEr A phi psi :
     psi \in 'CF(G, A) ->
  '[phi, psi] = #|G|%:R^-1 * \sum_(x in A) phi x * (psi x)^*.
Proof. by move=> Apsi; rewrite (cfdotElr (cfun_onT phi) Apsi) setTI. Qed.

Lemma cfdot_complement A phi psi :
  phi \in 'CF(G, A) -> psi \in 'CF(G, G :\: A) -> '[phi, psi] = 0.
Proof.
move=> Aphi A'psi; rewrite (cfdotElr Aphi A'psi).
by rewrite setDE setICA setICr setI0 big_set0 mulr0.
Qed.

Lemma cfnormE A phi :
  phi \in 'CF(G, A) -> '[phi] = #|G|%:R^-1 * (\sum_(x in A) `|phi x| ^+ 2).
Proof. by move/cfdotEl->; rewrite (eq_bigr _ (fun _ _ => normCK _)). Qed.

Lemma eq_cfdotl A phi1 phi2 psi :
  psi \in 'CF(G, A) -> {in A, phi1 =1 phi2} -> '[phi1, psi] = '[phi2, psi].
Proof.
move/cfdotEr=> eq_dot eq_phi; rewrite !eq_dot; congr (_ * _).
by apply: eq_bigr => x Ax; rewrite eq_phi.
Qed.

Lemma cfdot_cfuni A B :
  A <| G -> B <| G -> '['1_A, '1_B]_G = #|A :&: B|%:R / #|G|%:R.
Proof.
move=> nsAG nsBG; rewrite (cfdotElr (cfuni_on G A) (cfuni_on G B)) mulrC.
congr (_ / _); rewrite -sumr_const; apply: eq_bigr => x /setIP[Ax Bx].
by rewrite !cfuniE // Ax Bx rmorph1 mulr1.
Qed.

Lemma cfnorm1 : '[1]_G = 1.
Proof. by rewrite cfdot_cfuni ?genGid // setIid divff ?neq0CG. Qed.

Lemma cfdotrE psi phi : cfdotr psi phi = '[phi, psi]. Proof. by []. Qed.

Lemma cfdotr_is_linear xi : linear (cfdotr xi : 'CF(G) -> algC^o).
Proof.
move=> a phi psi; rewrite scalerAr -mulrDr; congr (_ * _).
rewrite linear_sum -big_split; apply: eq_bigr => x _ /=.
by rewrite !cfunE mulrDl -mulrA.
Qed.
Canonical cfdotr_additive xi := Additive (cfdotr_is_linear xi).
Canonical cfdotr_linear xi := Linear (cfdotr_is_linear xi).

Lemma cfdot0l xi : '[0, xi] = 0.
Proof. by rewrite -cfdotrE linear0. Qed.
Lemma cfdotNl xi phi : '[- phi, xi] = - '[phi, xi].
Proof. by rewrite -!cfdotrE linearN. Qed.
Lemma cfdotDl xi phi psi : '[phi + psi, xi] = '[phi, xi] + '[psi, xi].
Proof. by rewrite -!cfdotrE linearD. Qed.
Lemma cfdotBl xi phi psi : '[phi - psi, xi] = '[phi, xi] - '[psi, xi].
Proof. by rewrite -!cfdotrE linearB. Qed.
Lemma cfdotMnl xi phi n : '[phi *+ n, xi] = '[phi, xi] *+ n.
Proof. by rewrite -!cfdotrE linearMn. Qed.
Lemma cfdot_suml xi I r (P : pred I) (phi : I -> 'CF(G)) :
  '[\sum_(i <- r | P i) phi i, xi] = \sum_(i <- r | P i) '[phi i, xi].
Proof. by rewrite -!cfdotrE linear_sum. Qed.
Lemma cfdotZl xi a phi : '[a *: phi, xi] = a * '[phi, xi].
Proof. by rewrite -!cfdotrE linearZ. Qed.

Lemma cfdotC phi psi : '[phi, psi] = ('[psi, phi])^*.
Proof.
rewrite /cfdot rmorphM fmorphV rmorph_nat rmorph_sum; congr (_ * _).
by apply: eq_bigr=> x _; rewrite rmorphM conjCK mulrC.
Qed.
 
Lemma eq_cfdotr A phi psi1 psi2 :
  phi \in 'CF(G, A) -> {in A, psi1 =1 psi2} -> '[phi, psi1] = '[phi, psi2].
Proof. by move=> Aphi /eq_cfdotl eq_dot; rewrite cfdotC eq_dot // -cfdotC. Qed.

Lemma cfdotBr xi phi psi : '[xi, phi - psi] = '[xi, phi] - '[xi, psi].
Proof. by rewrite !(cfdotC xi) -rmorphB cfdotBl. Qed.
Canonical cfun_dot_additive xi := Additive (cfdotBr xi).

Lemma cfdot0r xi : '[xi, 0] = 0. Proof. exact: raddf0. Qed.
Lemma cfdotNr xi phi : '[xi, - phi] = - '[xi, phi].
Proof. exact: raddfN. Qed.
Lemma cfdotDr xi phi psi : '[xi, phi + psi] = '[xi, phi] + '[xi, psi].
Proof. exact: raddfD. Qed.
Lemma cfdotMnr xi phi n : '[xi, phi *+ n] = '[xi, phi] *+ n.
Proof. exact: raddfMn. Qed.
Lemma cfdot_sumr xi I r (P : pred I) (phi : I -> 'CF(G)) :
  '[xi, \sum_(i <- r | P i) phi i] = \sum_(i <- r | P i) '[xi, phi i].
Proof. exact: raddf_sum. Qed.
Lemma cfdotZr a xi phi : '[xi, a *: phi] = a^* * '[xi, phi].
Proof. by rewrite !(cfdotC xi) cfdotZl rmorphM. Qed.

Lemma cfdot_cfAut (u : {rmorphism algC -> algC}) phi psi : 
    {in image psi G, {morph u : x / x^*}} ->
  '[cfAut u phi, cfAut u psi] = u '[phi, psi].
Proof.
move=> uC; rewrite rmorphM fmorphV rmorph_nat rmorph_sum; congr (_ * _).
by apply: eq_bigr => x Gx; rewrite !cfunE rmorphM uC ?map_f ?mem_enum.
Qed.

Lemma cfdot_conjC phi psi : '[phi^*, psi^*] = '[phi, psi]^*.
Proof. by rewrite cfdot_cfAut. Qed.

Lemma cfdot_conjCl phi psi : '[phi^*, psi] = '[phi, psi^*]^*.
Proof. by rewrite -cfdot_conjC cfConjCK. Qed.

Lemma cfdot_conjCr phi psi : '[phi, psi^*] = '[phi^*, psi]^*.
Proof. by rewrite -cfdot_conjC cfConjCK. Qed.

Lemma cfnorm_ge0 phi : 0 <= '[phi].
Proof.
by rewrite mulr_ge0 ?invr_ge0 ?ler0n ?sumr_ge0 // => x _; apply: mul_conjC_ge0.
Qed.

Lemma cfnorm_eq0 phi : ('[phi] == 0) = (phi == 0).
Proof.
apply/idP/eqP=> [|->]; last by rewrite cfdot0r.
rewrite mulf_eq0 invr_eq0 (negbTE (neq0CG G)) /= => /eqP/psumr_eq0P phi0.
apply/cfun_inP=> x Gx; apply/eqP; rewrite cfunE -mul_conjC_eq0.
by rewrite phi0 // => y _; apply: mul_conjC_ge0.
Qed.

Lemma cfnorm_gt0 phi : ('[phi] > 0) = (phi != 0).
Proof. by rewrite ltr_def cfnorm_ge0 cfnorm_eq0 andbT. Qed.

Lemma sqrt_cfnorm_ge0 phi : 0 <= sqrtC '[phi].
Proof. by rewrite sqrtC_ge0 cfnorm_ge0. Qed.

Lemma sqrt_cfnorm_eq0 phi : (sqrtC '[phi] == 0) = (phi == 0).
Proof. by rewrite sqrtC_eq0 cfnorm_eq0. Qed.

Lemma sqrt_cfnorm_gt0 phi : (sqrtC '[phi] > 0) = (phi != 0).
Proof. by rewrite sqrtC_gt0 cfnorm_gt0. Qed.

Lemma cfnormZ a phi : '[a *: phi]= `|a| ^+ 2 * '[phi]_G.
Proof. by rewrite cfdotZl cfdotZr mulrA normCK. Qed.

Lemma cfnormN phi : '[- phi] = '[phi].
Proof. by rewrite cfdotNl raddfN opprK. Qed.

Lemma cfnorm_sign n phi : '[(-1) ^+ n *: phi] = '[phi].
Proof. by rewrite -signr_odd scaler_sign; case: (odd n); rewrite ?cfnormN. Qed.

Lemma cfnormD phi psi :
  let d := '[phi, psi] in '[phi + psi] = '[phi] + '[psi] + (d + d^*).
Proof. by rewrite /= addrAC -cfdotC cfdotDl !cfdotDr !addrA. Qed.

Lemma cfnormB phi psi :
  let d := '[phi, psi] in '[phi - psi] = '[phi] + '[psi] - (d + d^*).
Proof. by rewrite /= cfnormD cfnormN cfdotNr rmorphN -opprD. Qed.

Lemma cfnormDd phi psi : '[phi, psi] = 0 -> '[phi + psi] = '[phi] + '[psi].
Proof. by move=> ophipsi; rewrite cfnormD ophipsi rmorph0 !addr0. Qed.

Lemma cfnormBd phi psi : '[phi, psi] = 0 -> '[phi - psi] = '[phi] + '[psi].
Proof.
by move=> ophipsi; rewrite cfnormDd ?cfnormN // cfdotNr ophipsi oppr0.
Qed.

Lemma cfnorm_conjC phi : '[phi^*] = '[phi].
Proof. by rewrite cfdot_conjC geC0_conj // cfnorm_ge0. Qed.

Lemma cfCauchySchwarz phi psi :
  `|'[phi, psi]| ^+ 2 <= '[phi] * '[psi] ?= iff ~~ free (phi :: psi).
Proof.
rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC.
have [-> | nz_psi] /= := altP (psi =P 0).
  by apply/lerifP; rewrite !cfdot0r normCK mul0r mulr0.
without loss ophi: phi / '[phi, psi] = 0.
  move=> IHo; pose a := '[phi, psi] / '[psi]; pose phi1 := phi - a *: psi.
  have ophi: '[phi1, psi] = 0.
    by rewrite cfdotBl cfdotZl divfK ?cfnorm_eq0 ?subrr.
  rewrite (canRL (subrK _) (erefl phi1)) rpredDr ?rpredZ ?memv_line //.
  rewrite cfdotDl ophi add0r cfdotZl normrM (ger0_norm (cfnorm_ge0 _)).
  rewrite exprMn mulrA -cfnormZ cfnormDd; last by rewrite cfdotZr ophi mulr0.
  by have:= IHo _ ophi; rewrite mulrDl -lerif_subLR subrr ophi normCK mul0r.
rewrite ophi normCK mul0r; split; first by rewrite mulr_ge0 ?cfnorm_ge0.
rewrite eq_sym mulf_eq0 orbC cfnorm_eq0 (negPf nz_psi) /=.
apply/idP/idP=> [|/vlineP[a {2}->]]; last by rewrite cfdotZr ophi mulr0.
by rewrite cfnorm_eq0 => /eqP->; apply: rpred0.
Qed.

Lemma cfCauchySchwarz_sqrt phi psi :
  `|'[phi, psi]| <= sqrtC '[phi] * sqrtC '[psi] ?= iff ~~ free (phi :: psi).
Proof.
rewrite -(sqrCK (normr_ge0 _)) -sqrtCM ?qualifE ?cfnorm_ge0 //.
rewrite (mono_in_lerif ler_sqrtC) 1?rpredM ?qualifE ?normr_ge0 ?cfnorm_ge0 //.
exact: cfCauchySchwarz.
Qed.

Lemma cf_triangle_lerif phi psi :
  sqrtC '[phi + psi] <= sqrtC '[phi] + sqrtC '[psi]
           ?= iff ~~ free (phi :: psi) && (0 <= coord [tuple psi] 0 phi).
Proof.
rewrite -(mono_in_lerif ler_sqr) ?rpredD ?qualifE ?sqrtC_ge0 ?cfnorm_ge0 //.
rewrite andbC sqrrD !sqrtCK addrAC cfnormD (mono_lerif (ler_add2l _)).
rewrite -mulr_natr -[_ + _](divfK (negbT (eqC_nat 2 0))) -/('Re _).
rewrite (mono_lerif (ler_pmul2r _)) ?ltr0n //.
have:= lerif_trans (lerif_Re_Creal '[phi, psi]) (cfCauchySchwarz_sqrt phi psi).
congr (_ <= _ ?= iff _); apply: andb_id2r.
rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC.
have [-> | nz_psi] := altP (psi =P 0); first by rewrite cfdot0r coord0.
case/vlineP=> [x ->]; rewrite cfdotZl linearZ pmulr_lge0 ?cfnorm_gt0 //=.
by rewrite (coord_free 0) ?seq1_free // eqxx mulr1.
Qed.

Lemma orthogonal_cons phi R S :
  orthogonal (phi :: R) S = orthogonal phi S && orthogonal R S.
Proof. by rewrite /orthogonal /= andbT. Qed.

Lemma orthoP phi psi : reflect ('[phi, psi] = 0) (orthogonal phi psi).
Proof. by rewrite /orthogonal /= !andbT; apply: eqP. Qed.

Lemma orthogonalP S R :
  reflect {in S & R, forall phi psi, '[phi, psi] = 0} (orthogonal S R).
Proof.
apply: (iffP allP) => oSR phi => [psi /oSR/allP opS /opS/eqP // | /oSR opS].
by apply/allP=> psi /= /opS->.
Qed.

Lemma orthoPl phi S :
  reflect {in S, forall psi, '[phi, psi] = 0} (orthogonal phi S).
Proof.
by rewrite [orthogonal _ S]andbT /=; apply: (iffP allP) => ophiS ? /ophiS/eqP.
Qed.
Implicit Arguments orthoPl [phi S].

Lemma orthogonal_sym : symmetric (@orthogonal _ G).
Proof.
apply: symmetric_from_pre => R S /orthogonalP oRS.
by apply/orthogonalP=> phi psi Rpsi Sphi; rewrite cfdotC oRS ?rmorph0.
Qed.

Lemma orthoPr S psi :
  reflect {in S, forall phi, '[phi, psi] = 0} (orthogonal S psi).
Proof.
rewrite orthogonal_sym.
by apply: (iffP orthoPl) => oSpsi phi Sphi; rewrite cfdotC oSpsi ?conjC0.
Qed.

Lemma eq_orthogonal R1 R2 S1 S2 :
  R1 =i R2 -> S1 =i S2 -> orthogonal R1 S1 = orthogonal R2 S2.
Proof.
move=> eqR eqS; rewrite [orthogonal _ _](eq_all_r eqR).
by apply: eq_all => psi /=; apply: eq_all_r.
Qed.

Lemma orthogonal_catl R1 R2 S :
  orthogonal (R1 ++ R2) S = orthogonal R1 S && orthogonal R2 S.
Proof. exact: all_cat. Qed.

Lemma orthogonal_catr R S1 S2 :
  orthogonal R (S1 ++ S2) = orthogonal R S1 && orthogonal R S2.
Proof. by rewrite !(orthogonal_sym R) orthogonal_catl. Qed.

Lemma span_orthogonal S1 S2 phi1 phi2 :
    orthogonal S1 S2 -> phi1 \in <<S1>>%VS -> phi2 \in <<S2>>%VS ->
 '[phi1, phi2] = 0.
Proof.
move/orthogonalP=> oS12; do 2!move/(@coord_span _ _ _ (in_tuple _))->.
rewrite cfdot_suml big1 // => i _; rewrite cfdot_sumr big1 // => j _.
by rewrite cfdotZl cfdotZr oS12 ?mem_nth ?mulr0.
Qed.

Lemma orthogonal_split S beta :
  {X : 'CF(G) & X \in <<S>>%VS &
      {Y | [/\ beta = X + Y, '[X, Y] = 0 & orthogonal Y S]}}.
Proof.
suffices [X S_X [Y -> oYS]]:
  {X : _ & X \in <<S>>%VS & {Y | beta = X + Y & orthogonal Y S}}.
- exists X => //; exists Y.
  by rewrite cfdotC (span_orthogonal oYS) ?memv_span1 ?conjC0.
elim: S beta => [|phi S IHS] beta.
  by exists 0; last exists beta; rewrite ?mem0v ?add0r.
have [[U S_U [V -> oVS]] [X S_X [Y -> oYS]]] := (IHS phi, IHS beta).
pose Z := '[Y, V] / '[V] *: V; exists (X + Z).
  rewrite /Z -{4}(addKr U V) scalerDr scalerN addrA addrC span_cons.
  by rewrite memv_add ?memvB ?memvZ ?memv_line.
exists (Y - Z); first by rewrite addrCA !addrA addrK addrC.
apply/orthoPl=> psi; rewrite !inE => /predU1P[-> | Spsi]; last first.
  by rewrite cfdotBl cfdotZl (orthoPl oVS _ Spsi) mulr0 subr0 (orthoPl oYS).
rewrite cfdotBl !cfdotDr (span_orthogonal oYS) // ?memv_span ?mem_head //.
rewrite !cfdotZl (span_orthogonal oVS _ S_U) ?mulr0 ?memv_span ?mem_head //.
have [-> | nzV] := eqVneq V 0; first by rewrite cfdot0r !mul0r subrr.
by rewrite divfK ?cfnorm_eq0 ?subrr.
Qed.

Lemma map_orthogonal M (nu : 'CF(G) -> 'CF(M)) S R (A : pred 'CF(G)) :
  {in A &, isometry nu} -> {subset S <= A} -> {subset R <= A} ->
 orthogonal (map nu S) (map nu R) = orthogonal S R.
Proof.
move=> Inu sSA sRA; rewrite [orthogonal _ _]all_map.
apply: eq_in_all => phi Sphi; rewrite /= all_map.
by apply: eq_in_all => psi Rpsi; rewrite /= Inu ?(sSA phi) ?(sRA psi).
Qed.

Lemma orthogonal_oppr S R : orthogonal S (map -%R R) = orthogonal S R.
Proof.
wlog suffices IH: S R / orthogonal S R -> orthogonal S (map -%R R).
  by apply/idP/idP=> /IH; rewrite ?mapK //; apply: opprK.
move/orthogonalP=> oSR; apply/orthogonalP=> xi1 _ Sxi1 /mapP[xi2 Rxi2 ->].
by rewrite cfdotNr oSR ?oppr0.
Qed.

Lemma orthogonal_oppl S R : orthogonal (map -%R S) R = orthogonal S R.
Proof. by rewrite -!(orthogonal_sym R) orthogonal_oppr. Qed.

Lemma pairwise_orthogonalP S :
  reflect (uniq (0 :: S)
             /\ {in S &, forall phi psi, phi != psi -> '[phi, psi] = 0})
          (pairwise_orthogonal S).
Proof.
rewrite /pairwise_orthogonal /=; case notS0: (~~ _); last by right; case.
elim: S notS0 => [|phi S IH] /=; first by left.
rewrite inE eq_sym andbT => /norP[nz_phi /IH{IH}IH].
have [opS | not_opS] := allP; last first.
  right=> [[/andP[notSp _] opS]]; case: not_opS => psi Spsi /=.
  by rewrite opS ?mem_head 1?mem_behead // (memPnC notSp).
rewrite (contra (opS _)) /= ?cfnorm_eq0 //.
apply: (iffP IH) => [] [uniqS oSS]; last first.
  by split=> //; apply: sub_in2 oSS => psi Spsi; apply: mem_behead.
split=> // psi xi; rewrite !inE => /predU1P[-> // | Spsi].
  by case/predU1P=> [-> | /opS] /eqP.
case/predU1P=> [-> _ | Sxi /oSS-> //].
by apply/eqP; rewrite cfdotC conjC_eq0 [_ == 0]opS.
Qed.

Lemma pairwise_orthogonal_cat R S :
  pairwise_orthogonal (R ++ S) =
    [&& pairwise_orthogonal R, pairwise_orthogonal S & orthogonal R S].
Proof.
rewrite /pairwise_orthogonal mem_cat negb_or -!andbA; do !bool_congr.
elim: R => [|phi R /= ->]; rewrite ?andbT // orthogonal_cons all_cat -!andbA /=.
by do !bool_congr.
Qed.

Lemma eq_pairwise_orthogonal R S :
  perm_eq R S -> pairwise_orthogonal R = pairwise_orthogonal S.
Proof.
apply: catCA_perm_subst R S => R S S'. 
rewrite !pairwise_orthogonal_cat !orthogonal_catr (orthogonal_sym R S) -!andbA.
by do !bool_congr.
Qed.

Lemma sub_pairwise_orthogonal S1 S2 :
    {subset S1 <= S2} ->  uniq S1 ->
  pairwise_orthogonal S2 -> pairwise_orthogonal S1.
Proof.
move=> sS12 uniqS1 /pairwise_orthogonalP[/andP[notS2_0 _] oS2].
apply/pairwise_orthogonalP; rewrite /= (contra (sS12 0)) //.
by split=> //; apply: sub_in2 oS2.
Qed.

Lemma orthogonal_free S : pairwise_orthogonal S -> free S.
Proof.
case/pairwise_orthogonalP=> [/=/andP[notS0 uniqS] oSS].
rewrite -(in_tupleE S); apply/freeP => a aS0 i.
have S_i: S`_i \in S by apply: mem_nth.
have /eqP: '[S`_i, 0]_G = 0 := cfdot0r _.
rewrite -{2}aS0 raddf_sum /= (bigD1 i) //= big1 => [|j neq_ji]; last 1 first.
  by rewrite cfdotZr oSS ?mulr0 ?mem_nth // eq_sym nth_uniq.
rewrite addr0 cfdotZr mulf_eq0 conjC_eq0 cfnorm_eq0.
by case/pred2P=> // Si0; rewrite -Si0 S_i in notS0.
Qed.

Lemma filter_pairwise_orthogonal S p : 
  pairwise_orthogonal S -> pairwise_orthogonal (filter p S).
Proof.
move=> orthoS; apply: sub_pairwise_orthogonal (orthoS).
  exact: mem_subseq (filter_subseq p S).
exact/filter_uniq/free_uniq/orthogonal_free.
Qed.

Lemma orthonormal_not0 S : orthonormal S -> 0 \notin S.
Proof.
by case/andP=> /allP S1 _; rewrite (contra (S1 _)) //= cfdot0r eq_sym oner_eq0.
Qed.

Lemma orthonormalE S :
  orthonormal S = all [pred phi | '[phi] == 1] S && pairwise_orthogonal S.
Proof. by rewrite -(andb_idl (@orthonormal_not0 S)) andbCA. Qed.

Lemma orthonormal_orthogonal S : orthonormal S -> pairwise_orthogonal S.
Proof. by rewrite orthonormalE => /andP[_]. Qed.

Lemma orthonormal_cat R S :
  orthonormal (R ++ S) = [&& orthonormal R, orthonormal S & orthogonal R S].
Proof.
rewrite !orthonormalE pairwise_orthogonal_cat all_cat -!andbA.
by do !bool_congr.
Qed.

Lemma eq_orthonormal R S : perm_eq R S -> orthonormal R = orthonormal S.
Proof.
move=> eqRS; rewrite !orthonormalE (eq_all_r (perm_eq_mem eqRS)).
by rewrite (eq_pairwise_orthogonal eqRS).
Qed.

Lemma orthonormal_free S : orthonormal S -> free S.
Proof. by move/orthonormal_orthogonal/orthogonal_free. Qed.

Lemma orthonormalP S :
  reflect (uniq S /\ {in S &, forall phi psi, '[phi, psi]_G = (phi == psi)%:R})
          (orthonormal S).
Proof.
rewrite orthonormalE; have [/= normS | not_normS] := allP; last first.
  by right=> [[_ o1S]]; case: not_normS => phi Sphi; rewrite /= o1S ?eqxx.
apply: (iffP (pairwise_orthogonalP S)) => [] [uniqS oSS].
  split=> // [|phi psi]; first by case/andP: uniqS.
  by have [-> _ /normS/eqP | /oSS] := altP eqP.
split=> // [|phi psi Sphi Spsi /negbTE]; last by rewrite oSS // => ->.
by rewrite /= (contra (normS _)) // cfdot0r eq_sym oner_eq0.
Qed.

Lemma sub_orthonormal S1 S2 :
  {subset S1 <= S2} -> uniq S1 -> orthonormal S2 -> orthonormal S1.
Proof.
move=> sS12 uniqS1 /orthonormalP[_ oS1]. 
by apply/orthonormalP; split; last apply: sub_in2 sS12 _ _.
Qed.

Lemma orthonormal2P phi psi :
  reflect [/\ '[phi, psi] = 0, '[phi] = 1 & '[psi] = 1]
          (orthonormal [:: phi; psi]).
Proof.
rewrite /orthonormal /= !andbT andbC.
by apply: (iffP and3P) => [] []; do 3!move/eqP->.
Qed.

Lemma conjC_pair_orthogonal S chi :
    cfConjC_closed S -> ~~ has cfReal S -> pairwise_orthogonal S -> chi \in S ->
  pairwise_orthogonal (chi :: chi^*%CF).
Proof.
move=> ccS /hasPn nrS oSS Schi; apply: sub_pairwise_orthogonal oSS.
  by apply/allP; rewrite /= Schi ccS.
by rewrite /= inE eq_sym nrS.
Qed.

Lemma cfdot_real_conjC phi psi : cfReal phi -> '[phi, psi^*]_G = '[phi, psi]^*.
Proof. by rewrite -cfdot_conjC => /eqcfP->. Qed.

Lemma extend_cfConjC_subset S X phi :
    cfConjC_closed S -> ~~ has cfReal S -> phi \in S -> phi \notin X ->
  cfConjC_subset X S -> cfConjC_subset [:: phi, phi^* & X]%CF S.
Proof.
move=> ccS nrS Sphi X'phi [uniqX /allP-sXS ccX].
split; last 1 [by apply/allP; rewrite /= Sphi ccS | apply/allP]; rewrite /= inE.
  by rewrite negb_or X'phi eq_sym (hasPn nrS) // (contra (ccX _)) ?cfConjCK.
by rewrite cfConjCK !mem_head orbT; apply/allP=> xi Xxi; rewrite !inE ccX ?orbT.
Qed.

(* Note: other isometry lemmas, and the dot product lemmas for orthogonal     *)
(* and orthonormal sequences are in vcharacter, because we need the 'Z[S]     *)
(* notation for the isometry domains. Alternatively, this could be moved to   *)
(* cfun.                                                                      *)

End DotProduct.

Implicit Arguments orthoP [gT G phi psi].
Implicit Arguments orthoPl [gT G phi S].
Implicit Arguments orthoPr [gT G S psi].
Implicit Arguments orthogonalP [gT G R S].
Implicit Arguments pairwise_orthogonalP [gT G S].
Implicit Arguments orthonormalP [gT G S].

Section CfunOrder.

Variables (gT : finGroupType) (G : {group gT}) (phi : 'CF(G)).

Lemma dvdn_cforderP n :
  reflect {in G, forall x, phi x ^+ n = 1} (#[phi]%CF %| n)%N.
Proof.
apply: (iffP (dvdn_biglcmP _ _ _)); rewrite genGid => phiG1 x Gx.
  by apply/eqP; rewrite -dvdn_orderC phiG1.
by rewrite dvdn_orderC phiG1.
Qed.

Lemma dvdn_cforder n : (#[phi]%CF %| n) = (phi ^+ n == 1).
Proof.
apply/dvdn_cforderP/eqP=> phi_n_1 => [|x Gx].
  by apply/cfun_inP=> x Gx; rewrite exp_cfunE // cfun1E Gx phi_n_1.
by rewrite -exp_cfunE // phi_n_1 // cfun1E Gx.
Qed.

Lemma exp_cforder : phi ^+ #[phi]%CF = 1.
Proof. by apply/eqP; rewrite -dvdn_cforder. Qed.

End CfunOrder.

Implicit Arguments dvdn_cforderP [gT G phi n].

Section MorphOrder.

Variables (aT rT : finGroupType) (G : {group aT}) (R : {group rT}).
Variable f : {rmorphism 'CF(G) -> 'CF(R)}.

Lemma cforder_rmorph phi : #[f phi]%CF %| #[phi]%CF.
Proof. by rewrite dvdn_cforder -rmorphX exp_cforder rmorph1. Qed.

Lemma cforder_inj_rmorph phi : injective f -> #[f phi]%CF = #[phi]%CF.
Proof.
move=> inj_f; apply/eqP; rewrite eqn_dvd cforder_rmorph dvdn_cforder /=.
by rewrite -(rmorph_eq1 _ inj_f) rmorphX exp_cforder.
Qed.

End MorphOrder.

Section BuildIsometries.

Variable (gT : finGroupType) (L G : {group gT}).
Implicit Types (phi psi xi : 'CF(L)) (R S : seq 'CF(L)).
Implicit Types (U : pred 'CF(L)) (W : pred 'CF(G)).

Lemma sub_iso_to U1 U2 W1 W2 tau :
    {subset U2 <= U1} -> {subset W1 <= W2} ->
  {in U1, isometry tau, to W1} -> {in U2, isometry tau, to W2}.
Proof.
by move=> sU sW [Itau Wtau]; split=> [|u /sU/Wtau/sW //]; apply: sub_in2 Itau.
Qed.

Lemma isometry_of_free S f :
    free S -> {in S &, isometry f} ->
  {tau : {linear 'CF(L) -> 'CF(G)} |
    {in S, tau =1 f} & {in <<S>>%VS &, isometry tau}}.
Proof.
move=> freeS If; have defS := free_span freeS.
have [tau /(_ freeS (size_map f S))Dtau] := linear_of_free S (map f S).
have{Dtau} Dtau: {in S, tau =1 f}.
  by move=> _ /(nthP 0)[i ltiS <-]; rewrite -!(nth_map 0 0) ?Dtau.
exists tau => // _ _ /defS[a -> _] /defS[b -> _].
rewrite !{1}linear_sum !{1}cfdot_suml; apply/eq_big_seq=> xi1 Sxi1.
rewrite !{1}cfdot_sumr; apply/eq_big_seq=> xi2 Sxi2.
by rewrite !linearZ /= !Dtau // !cfdotZl !cfdotZr If.
Qed.

Lemma isometry_of_cfnorm S tauS :
    pairwise_orthogonal S -> pairwise_orthogonal tauS ->
    map cfnorm tauS = map cfnorm S ->
  {tau : {linear 'CF(L) -> 'CF(G)} | map tau S = tauS
                                   & {in <<S>>%VS &, isometry tau}}.
Proof.
move=> oS oT eq_nST; have freeS := orthogonal_free oS.
have eq_sz: size tauS = size S by have:= congr1 size eq_nST; rewrite !size_map.
have [tau defT] := linear_of_free S tauS; rewrite -[S]/(tval (in_tuple S)).
exists tau => [|u v /coord_span-> /coord_span->]; rewrite ?raddf_sum ?defT //=.
apply: eq_bigr => i _ /=; rewrite linearZ !cfdotZr !cfdot_suml; congr (_ * _).
apply: eq_bigr => j _ /=; rewrite linearZ !cfdotZl; congr (_ * _).
rewrite -!(nth_map 0 0 tau) ?{}defT //; have [-> | neq_ji] := eqVneq j i.
  by rewrite -!['[_]](nth_map 0 0 cfnorm) ?eq_sz // eq_nST.
have{oS} [/=/andP[_ uS] oS] := pairwise_orthogonalP oS.
have{oT} [/=/andP[_ uT] oT] := pairwise_orthogonalP oT.
by rewrite oS ?oT ?mem_nth ?nth_uniq ?eq_sz.
Qed.

Lemma isometry_raddf_inj U (tau : {additive 'CF(L) -> 'CF(G)}) :
    {in U &, isometry tau} -> {in U &, forall u v, u - v \in U} ->
  {in U &, injective tau}.
Proof.
move=> Itau linU phi psi Uphi Upsi /eqP; rewrite -subr_eq0 -raddfB.
by rewrite -cfnorm_eq0 Itau ?linU // cfnorm_eq0 subr_eq0 => /eqP.
Qed.

Lemma opp_isometry : @isometry _ _ G G -%R.
Proof. by move=> x y; rewrite cfdotNl cfdotNr opprK. Qed.

End BuildIsometries.

Section Restrict.

Variables (gT : finGroupType) (A B : {set gT}).
Local Notation H := <<A>>.
Local Notation G := <<B>>.

Fact cfRes_subproof (phi : 'CF(B)) :
  is_class_fun H [ffun x => phi (if H \subset G then x else 1%g) *+ (x \in H)].
Proof.
apply: intro_class_fun => /= [x y Hx Hy | x /negbTE/=-> //].
by rewrite Hx (groupJ Hx) //; case: subsetP => // sHG; rewrite cfunJgen ?sHG.
Qed.
Definition cfRes phi := Cfun 1 (cfRes_subproof phi).

Lemma cfResE phi : A \subset B -> {in A, cfRes phi =1 phi}.
Proof. by move=> sAB x Ax; rewrite cfunElock mem_gen ?genS. Qed.

Lemma cfRes1 phi : cfRes phi 1%g = phi 1%g.
Proof. by rewrite cfunElock if_same group1. Qed.

Lemma cfRes_is_linear : linear cfRes.
Proof.
by move=> a phi psi; apply/cfunP=> x; rewrite !cfunElock mulrnAr mulrnDl.
Qed.
Canonical cfRes_additive := Additive cfRes_is_linear.
Canonical cfRes_linear := Linear cfRes_is_linear.

Lemma cfRes_cfun1 : cfRes 1 = 1.
Proof.
apply: cfun_in_genP => x Hx; rewrite cfunElock Hx !cfun1Egen Hx.
by case: subsetP => [-> // | _]; rewrite group1.
Qed.

Lemma cfRes_is_multiplicative : multiplicative cfRes.
Proof.
split=> [phi psi|]; [apply/cfunP=> x | exact: cfRes_cfun1]. 
by rewrite !cfunElock mulrnAr mulrnAl -mulrnA mulnb andbb.
Qed.
Canonical cfRes_rmorphism := AddRMorphism cfRes_is_multiplicative.
Canonical cfRes_lrmorphism := [lrmorphism of cfRes].

End Restrict.

Arguments Scope cfRes [_ group_scope group_scope cfun_scope].
Notation "''Res[' H , G ]" := (@cfRes _ H G) (only parsing) : ring_scope.
Notation "''Res[' H ]" := 'Res[H, _] : ring_scope.
Notation "''Res'" := 'Res[_] (only parsing) : ring_scope.

Section MoreRestrict.

Variables (gT : finGroupType) (G H : {group gT}).
Implicit Types (A : {set gT}) (phi : 'CF(G)).

Lemma cfResEout phi : ~~ (H \subset G) -> 'Res[H] phi = (phi 1%g)%:A.
Proof.
move/negPf=> not_sHG; apply/cfunP=> x.
by rewrite cfunE cfun1E mulr_natr cfunElock !genGid not_sHG.
Qed.

Lemma cfResRes A phi :
  A \subset H -> H \subset G -> 'Res[A] ('Res[H] phi) = 'Res[A] phi.
Proof.
move=> sAH sHG; apply/cfunP=> x; rewrite !cfunElock !genGid !gen_subG sAH sHG.
by rewrite (subset_trans sAH) // -mulrnA mulnb -in_setI (setIidPr _) ?gen_subG.
Qed.

Lemma cfRes_id A psi : 'Res[A] psi = psi.
Proof. by apply/cfun_in_genP=> x Ax; rewrite cfunElock Ax subxx. Qed.

Lemma sub_cfker_Res A phi :
  A \subset H -> A \subset cfker phi -> A \subset cfker ('Res[H, G] phi).
Proof.
move=> sAH kerA; apply/subsetP=> x Ax; have Hx := subsetP sAH x Ax.
rewrite inE Hx; apply/forallP=> y; rewrite !cfunElock !genGid groupMl //.
by rewrite !(fun_if phi) cfkerMl // (subsetP kerA).
Qed.

Lemma eq_cfker_Res phi : H \subset cfker phi -> cfker ('Res[H, G] phi) = H.
Proof. by move=> kH; apply/eqP; rewrite eqEsubset cfker_sub sub_cfker_Res. Qed.

Lemma cfRes_sub_ker phi : H \subset cfker phi -> 'Res[H, G] phi = (phi 1%g)%:A.
Proof.
move=> kerHphi; have sHG := subset_trans kerHphi (cfker_sub phi).
apply/cfun_inP=> x Hx; have ker_x := subsetP kerHphi x Hx.
by rewrite cfResE // cfunE cfun1E Hx mulr1 cfker1.
Qed.

Lemma cforder_Res phi : #['Res[H] phi]%CF %| #[phi]%CF.
Proof. exact: cforder_rmorph. Qed.

End MoreRestrict.

Section Morphim.

Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).

Section Main.

Variable G : {group aT}.
Implicit Type phi : 'CF(f @* G).

Fact cfMorph_subproof phi :
  is_class_fun <<G>>
    [ffun x => phi (if G \subset D then f x else 1%g) *+ (x \in G)].
Proof.
rewrite genGid; apply: intro_class_fun => [x y Gx Gy | x /negPf-> //].
rewrite Gx groupJ //; case subsetP => // sGD.
by rewrite morphJ ?cfunJ ?mem_morphim ?sGD.
Qed.
Definition cfMorph phi := Cfun 1 (cfMorph_subproof phi).

Lemma cfMorphE phi x : G \subset D -> x \in G -> cfMorph phi x = phi (f x).
Proof. by rewrite cfunElock => -> ->. Qed.

Lemma cfMorph1 phi : cfMorph phi 1%g = phi 1%g.
Proof. by rewrite cfunElock morph1 if_same group1. Qed.

Lemma cfMorphEout phi : ~~ (G \subset D) -> cfMorph phi = (phi 1%g)%:A.
Proof.
move/negPf=> not_sGD; apply/cfunP=> x; rewrite cfunE cfun1E mulr_natr.
by rewrite cfunElock not_sGD.
Qed.

Lemma cfMorph_cfun1 : cfMorph 1 = 1.
Proof.
apply/cfun_inP=> x Gx; rewrite cfunElock !cfun1E Gx.
by case: subsetP => [sGD | _]; rewrite ?group1 // mem_morphim ?sGD.
Qed.

Fact cfMorph_is_linear : linear cfMorph.
Proof.
by move=> a phi psi; apply/cfunP=> x; rewrite !cfunElock mulrnAr -mulrnDl.
Qed.
Canonical cfMorph_additive := Additive cfMorph_is_linear.
Canonical cfMorph_linear := Linear cfMorph_is_linear.

Fact cfMorph_is_multiplicative : multiplicative cfMorph.
Proof.
split=> [phi psi|]; [apply/cfunP=> x | exact: cfMorph_cfun1]. 
by rewrite !cfunElock mulrnAr mulrnAl -mulrnA mulnb andbb.
Qed.
Canonical cfMorph_rmorphism := AddRMorphism cfMorph_is_multiplicative.
Canonical cfMorph_lrmorphism := [lrmorphism of cfMorph].

Hypothesis sGD : G \subset D.

Lemma cfMorph_inj : injective cfMorph.
Proof.
move=> phi1 phi2 eq_phi; apply/cfun_inP=> _ /morphimP[x Dx Gx ->].
by rewrite -!cfMorphE // eq_phi.
Qed.

Lemma cfMorph_eq1 phi : (cfMorph phi == 1) = (phi == 1).
Proof. by apply: rmorph_eq1; apply: cfMorph_inj. Qed.

Lemma cfker_morph phi : cfker (cfMorph phi) = G :&: f @*^-1 (cfker phi).
Proof.
apply/setP=> x; rewrite !inE; apply: andb_id2l => Gx.
have Dx := subsetP sGD x Gx; rewrite Dx mem_morphim //=.
apply/forallP/forallP=> Kx y.
  have [{y} /morphimP[y Dy Gy ->] | fG'y] := boolP (y \in f @* G).
    by rewrite -morphM // -!(cfMorphE phi) ?groupM.
  by rewrite !cfun0 ?groupMl // mem_morphim.
have [Gy | G'y] := boolP (y \in G); last by rewrite !cfun0 ?groupMl.
by rewrite !cfMorphE ?groupM ?morphM // (subsetP sGD).
Qed.

Lemma cfker_morph_im phi : f @* cfker (cfMorph phi) = cfker phi.
Proof. by rewrite cfker_morph // morphim_setIpre (setIidPr (cfker_sub _)). Qed.

Lemma sub_cfker_morph phi (A : {set aT}) :
  (A \subset cfker (cfMorph phi)) = (A \subset G) && (f @* A \subset cfker phi).
Proof.
rewrite cfker_morph // subsetI; apply: andb_id2l => sAG.
by rewrite sub_morphim_pre // (subset_trans sAG).
Qed.

Lemma sub_morphim_cfker phi (A : {set aT}) :
  A \subset G -> (f @* A \subset cfker phi) = (A \subset cfker (cfMorph phi)).
Proof. by move=> sAG; rewrite sub_cfker_morph ?sAG. Qed.

Lemma cforder_morph phi : #[cfMorph phi]%CF = #[phi]%CF.
Proof. by apply: cforder_inj_rmorph; apply: cfMorph_inj. Qed.

End Main.

Lemma cfResMorph (G H : {group aT}) (phi : 'CF(f @* G)) :
  H \subset G -> G \subset D -> 'Res (cfMorph phi) = cfMorph ('Res[f @* H] phi).
Proof.
move=> sHG sGD; have sHD := subset_trans sHG sGD.
apply/cfun_inP=> x Hx; have [Gx Dx] := (subsetP sHG x Hx, subsetP sHD x Hx).
by rewrite !(cfMorphE, cfResE) ?morphimS ?mem_morphim //.
Qed.

End Morphim.

Prenex Implicits cfMorph.

Section Isomorphism.

Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
Variable R : {group rT}.

Hypothesis isoGR : isom G R f.

Let defR := isom_im isoGR.
Local Notation G1 := (isom_inv isoGR @* R).
Let defG : G1 = G := isom_im (isom_sym isoGR).

Fact cfIsom_key : unit. Proof. by []. Qed.
Definition cfIsom :=
  locked_with cfIsom_key (cfMorph \o 'Res[G1] : 'CF(G) -> 'CF(R)).
Canonical cfIsom_unlockable := [unlockable of cfIsom].

Lemma cfIsomE phi x : x \in G -> cfIsom phi (f x) = phi x.
Proof.
move=> Gx; rewrite unlock cfMorphE //= /restrm ?defG ?cfRes_id ?invmE //. 
by rewrite -defR mem_morphim.
Qed.

Lemma cfIsom1 phi : cfIsom phi 1%g = phi 1%g.
Proof. by rewrite -(morph1 f) cfIsomE. Qed.

Canonical cfIsom_additive := [additive of cfIsom].
Canonical cfIsom_linear := [linear of cfIsom].
Canonical cfIsom_rmorphism := [rmorphism of cfIsom].
Canonical cfIsom_lrmorphism := [lrmorphism of cfIsom].
Lemma cfIsom_cfun1 : cfIsom 1 = 1. Proof. exact: rmorph1. Qed.

Lemma cfker_isom phi : cfker (cfIsom phi) = f @* cfker phi.
Proof.
rewrite unlock cfker_morph // defG cfRes_id morphpre_restrm morphpre_invm.
by rewrite -defR !morphimIim.
Qed.

End Isomorphism.

Prenex Implicits cfIsom.

Section InvMorphism.

Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
Variable R : {group rT}.

Hypothesis isoGR : isom G R f.

Lemma cfIsomK : cancel (cfIsom isoGR) (cfIsom (isom_sym isoGR)).
Proof.
move=> phi; apply/cfun_inP=> x Gx; rewrite -{1}(invmE (isom_inj isoGR) Gx).
by rewrite !cfIsomE // -(isom_im isoGR) mem_morphim.
Qed.

Lemma cfIsomKV : cancel (cfIsom (isom_sym isoGR)) (cfIsom isoGR).
Proof.
move=> phi; apply/cfun_inP=> y Ry; pose injGR := isom_inj isoGR.
rewrite -{1}[y](invmK injGR) ?(isom_im isoGR) //.
suffices /morphpreP[fGy Gf'y]: y \in invm injGR @*^-1 G by rewrite !cfIsomE.
by rewrite morphpre_invm (isom_im isoGR).
Qed.

Lemma cfIsom_inj : injective (cfIsom isoGR). Proof. exact: can_inj cfIsomK. Qed.

Lemma cfIsom_eq1 phi : (cfIsom isoGR phi == 1) = (phi == 1).
Proof. by apply: rmorph_eq1; apply: cfIsom_inj. Qed.

Lemma cforder_isom phi : #[cfIsom isoGR phi]%CF = #[phi]%CF.
Proof. exact: cforder_inj_rmorph cfIsom_inj. Qed.

End InvMorphism.

Implicit Arguments cfIsom_inj [aT rT G R f x1 x2].

Section Coset.

Variables (gT : finGroupType) (G : {group gT}) (B : {set gT}).
Implicit Type rT : finGroupType.
Local Notation H := <<B>>%g.

Definition cfMod : 'CF(G / B) -> 'CF(G) := cfMorph.

Definition ffun_Quo (phi : 'CF(G)) :=
  [ffun Hx : coset_of B =>
    phi (if B \subset cfker phi then repr Hx else 1%g) *+ (Hx \in G / B)%g].
Fact cfQuo_subproof phi : is_class_fun <<G / B>> (ffun_Quo phi).
Proof.
rewrite genGid; apply: intro_class_fun => [|Hx /negPf-> //].
move=> _ _ /morphimP[x Nx Gx ->] /morphimP[z Nz Gz ->].
rewrite -morphJ ?mem_morphim ?val_coset_prim ?groupJ //= -gen_subG.
case: subsetP => // KphiH; do 2!case: repr_rcosetP => _ /KphiH/cfkerMl->.
by rewrite cfunJ.
Qed.
Definition cfQuo phi := Cfun 1 (cfQuo_subproof phi).

Local Notation "phi /  'B'" := (cfQuo phi) (at level 40) : cfun_scope.
Local Notation "phi %%  'B'" := (cfMod phi) (at level 40) : cfun_scope.

(* We specialize the cfMorph lemmas to cfMod by strengthening the domain      *)
(* condition G \subset 'N(H) to H <| G; the cfMorph lemmas can be used if the *)
(* stronger results are needed.                                               *)

Lemma cfModE phi x : B <| G -> x \in G -> (phi %% B)%CF x = phi (coset B x).
Proof. by move/normal_norm=> nBG; apply: cfMorphE. Qed.

Lemma cfMod1 phi : (phi %% B)%CF 1%g = phi 1%g. Proof. exact: cfMorph1. Qed.

Canonical cfMod_additive := [additive of cfMod].
Canonical cfMod_rmorphism := [rmorphism of cfMod].
Canonical cfMod_linear := [linear of cfMod].
Canonical cfMod_lrmorphism := [lrmorphism of cfMod].

Lemma cfMod_cfun1 : (1 %% B)%CF = 1. Proof. exact: rmorph1. Qed.

Lemma cfker_mod phi : B <| G -> B \subset cfker (phi %% B).
Proof.
case/andP=> sBG nBG; rewrite cfker_morph // subsetI sBG.
apply: subset_trans _ (ker_sub_pre _ _); rewrite ker_coset_prim subsetI.
by rewrite (subset_trans sBG nBG) sub_gen.
Qed.

(* Note that cfQuo is nondegenerate even when G does not normalize B.         *)

Lemma cfQuoEnorm (phi : 'CF(G)) x :
  B \subset cfker phi -> x \in 'N_G(B) -> (phi / B)%CF (coset B x) = phi x.
Proof.
rewrite cfunElock -gen_subG => sHK /setIP[Gx nHx]; rewrite sHK /=.
rewrite mem_morphim // val_coset_prim //.
by case: repr_rcosetP => _ /(subsetP sHK)/cfkerMl->.
Qed.

Lemma cfQuoE (phi : 'CF(G)) x :
  B <| G -> B \subset cfker phi -> x \in G -> (phi / B)%CF (coset B x) = phi x.
Proof. by case/andP=> _ nBG sBK Gx; rewrite cfQuoEnorm // (setIidPl _). Qed.

Lemma cfQuo1 (phi : 'CF(G)) : (phi / B)%CF 1%g = phi 1%g.
Proof. by rewrite cfunElock repr_coset1 group1 if_same. Qed.

Lemma cfQuoEout (phi : 'CF(G)) :
  ~~ (B \subset cfker phi) -> (phi / B)%CF = (phi 1%g)%:A.
Proof.
move/negPf=> not_kerB; apply/cfunP=> x; rewrite cfunE cfun1E mulr_natr.
by rewrite cfunElock not_kerB.
Qed.

(* cfQuo is only linear on the class functions that have H in their kernel. *)

Lemma cfQuo_cfun1 : (1 / B)%CF = 1.
Proof.
apply/cfun_inP=> Hx G_Hx; rewrite cfunElock !cfun1E G_Hx cfker_cfun1 -gen_subG.
have [x nHx Gx ->] := morphimP G_Hx.
case: subsetP=> [sHG | _]; last by rewrite group1.
by rewrite val_coset_prim //; case: repr_rcosetP => y /sHG/groupM->.
Qed.

(* Cancellation properties *)

Lemma cfModK : B <| G -> cancel cfMod cfQuo.
Proof.
move=> nsBG phi; apply/cfun_inP=> _ /morphimP[x Nx Gx ->] //.
by rewrite cfQuoE ?cfker_mod ?cfModE.
Qed.

Lemma cfQuoK :
  B <| G -> forall phi, B \subset cfker phi -> (phi / B %% B)%CF = phi.
Proof.
by move=> nsHG phi sHK; apply/cfun_inP=> x Gx; rewrite cfModE ?cfQuoE.
Qed.

Lemma cfMod_eq1 psi : B <| G -> (psi %% B == 1)%CF = (psi == 1).
Proof. by move/cfModK/can_eq <-; rewrite rmorph1. Qed.

Lemma cfQuo_eq1 phi :
  B <| G -> B \subset cfker phi -> (phi / B == 1)%CF = (phi == 1).
Proof. by move=> nsBG kerH; rewrite -cfMod_eq1 // cfQuoK. Qed.

End Coset.

Arguments Scope cfQuo [_ Group_scope group_scope cfun_scope].
Arguments Scope cfMod [_ Group_scope group_scope cfun_scope].
Prenex Implicits cfMod.
Notation "phi / H" := (cfQuo H phi) : cfun_scope.
Notation "phi %% H" := (@cfMod _ _ H phi) : cfun_scope.

Section MoreCoset.

Variables (gT : finGroupType) (G : {group gT}).
Implicit Types (H K : {group gT}) (phi : 'CF(G)).

Lemma cfResMod H K (psi : 'CF(G / K)) :
  H \subset G -> K <| G -> ('Res (psi %% K) = 'Res[H / K] psi %% K)%CF.
Proof. by move=> sHG /andP[_]; apply: cfResMorph. Qed.

Lemma quotient_cfker_mod (A : {set gT}) K (psi : 'CF(G / K)) :
  K <| G -> (cfker (psi %% K) / K)%g = cfker psi.
Proof. by case/andP=> _ /cfker_morph_im <-. Qed.

Lemma sub_cfker_mod (A : {set gT}) K (psi : 'CF(G / K)) :
    K <| G -> A \subset 'N(K) ->
  (A \subset cfker (psi %% K)) = (A / K \subset cfker psi)%g.
Proof.
by move=> nsKG nKA; rewrite -(quotientSGK nKA) ?quotient_cfker_mod ?cfker_mod.
Qed.  

Lemma cfker_quo H phi :
  H <| G -> H \subset cfker (phi) -> cfker (phi / H) = (cfker phi / H)%g.
Proof.
move=> nsHG /cfQuoK {2}<- //; have [sHG nHG] := andP nsHG.
by rewrite cfker_morph 1?quotientGI // cosetpreK (setIidPr _) ?cfker_sub.
Qed.

Lemma cfQuoEker phi x :
  x \in G -> (phi / cfker phi)%CF (coset (cfker phi) x) = phi x.
Proof. by move/cfQuoE->; rewrite ?cfker_normal. Qed.

Lemma cfaithful_quo phi : cfaithful (phi / cfker phi).
Proof. by rewrite cfaithfulE cfker_quo ?cfker_normal ?trivg_quotient. Qed.

(* Note that there is no requirement that K be normal in H or G. *)
Lemma cfResQuo H K phi :
     K \subset cfker phi -> K \subset H -> H \subset G -> 
  ('Res[H / K] (phi / K) = 'Res[H] phi / K)%CF.
Proof.
move=> kerK sKH sHG; apply/cfun_inP=> xb Hxb; rewrite cfResE ?quotientS //.
have{xb Hxb} [x nKx Hx ->] := morphimP Hxb.
by rewrite !cfQuoEnorm ?cfResE ?sub_cfker_Res // inE ?Hx ?(subsetP sHG).
Qed.

Lemma cfQuoInorm K phi :
  K \subset cfker phi -> (phi / K)%CF = 'Res ('Res['N_G(K)] phi / K)%CF.
Proof.
move=> kerK; rewrite -cfResQuo ?subsetIl ?quotientInorm ?cfRes_id //.
by rewrite subsetI normG (subset_trans kerK) ?cfker_sub.
Qed.

Lemma cforder_mod H (psi : 'CF(G / H)) : H <| G -> #[psi %% H]%CF = #[psi]%CF.
Proof. by move/cfModK/can_inj/cforder_inj_rmorph->. Qed.

Lemma cforder_quo H phi :
  H <| G -> H \subset cfker phi -> #[phi / H]%CF = #[phi]%CF.
Proof. by move=> nsHG kerHphi; rewrite -cforder_mod ?cfQuoK. Qed.

End MoreCoset.

Section Product.

Variable (gT : finGroupType) (G : {group gT}).

Lemma cfunM_onI A B phi psi : 
  phi \in 'CF(G, A) -> psi \in 'CF(G, B) -> phi * psi \in 'CF(G, A :&: B).
Proof.
rewrite !cfun_onE => Aphi Bpsi; apply/subsetP=> x; rewrite !inE cfunE mulf_eq0.
by case/norP=> /(subsetP Aphi)-> /(subsetP Bpsi).
Qed.

Lemma cfunM_on A phi psi : 
  phi \in 'CF(G, A) -> psi \in 'CF(G, A) -> phi * psi \in 'CF(G, A).
Proof. by move=> Aphi Bpsi; rewrite -[A]setIid cfunM_onI. Qed.

End Product.

Section SDproduct.

Variables (gT : finGroupType) (G K H : {group gT}).
Hypothesis defG : K ><| H = G.

Fact cfSdprodKey : unit. Proof. by []. Qed.

Definition cfSdprod :=
  locked_with cfSdprodKey
   (cfMorph \o cfIsom (tagged (sdprod_isom defG)) : 'CF(H) -> 'CF(G)).
Canonical cfSdprod_unlockable := [unlockable of cfSdprod].

Canonical cfSdprod_additive := [additive of cfSdprod].
Canonical cfSdprod_linear := [linear of cfSdprod].
Canonical cfSdprod_rmorphism := [rmorphism of cfSdprod].
Canonical cfSdprod_lrmorphism := [lrmorphism of cfSdprod].

Lemma cfSdprod1 phi : cfSdprod phi 1%g = phi 1%g.
Proof. by rewrite unlock /= cfMorph1 cfIsom1. Qed.

Let nsKG : K <| G. Proof. by have [] := sdprod_context defG. Qed.
Let sHG : H \subset G. Proof. by have [] := sdprod_context defG. Qed.
Let sKG : K \subset G. Proof. by have [] := andP nsKG. Qed.

Lemma cfker_sdprod phi : K \subset cfker (cfSdprod phi).
Proof. by rewrite unlock_with cfker_mod. Qed.

Lemma cfSdprodEr phi : {in H, cfSdprod phi =1 phi}.
Proof. by move=> y Hy; rewrite unlock cfModE ?cfIsomE ?(subsetP sHG). Qed.

Lemma cfSdprodE phi : {in K & H, forall x y, cfSdprod phi (x * y)%g = phi y}.
Proof.
by move=> x y Kx Hy; rewrite /= cfkerMl ?(subsetP (cfker_sdprod _)) ?cfSdprodEr.
Qed.

Lemma cfSdprodK : cancel cfSdprod 'Res[H].
Proof. by move=> phi; apply/cfun_inP=> x Hx; rewrite cfResE ?cfSdprodEr. Qed.

Lemma cfSdprod_inj : injective cfSdprod. Proof. exact: can_inj cfSdprodK. Qed.

Lemma cfSdprod_eq1 phi : (cfSdprod phi == 1) = (phi == 1).
Proof. exact: rmorph_eq1 cfSdprod_inj. Qed.

Lemma cfRes_sdprodK phi : K \subset cfker phi -> cfSdprod ('Res[H] phi) = phi.
Proof.
move=> kerK; apply/cfun_inP=> _ /(mem_sdprod defG)[x [y [Kx Hy -> _]]].
by rewrite cfSdprodE // cfResE // cfkerMl ?(subsetP kerK).
Qed.

Lemma sdprod_cfker phi : K ><| cfker phi = cfker (cfSdprod phi).
Proof.
have [skerH [_ _ nKH tiKH]] := (cfker_sub phi, sdprodP defG).
rewrite unlock cfker_morph ?normal_norm // cfker_isom restrmEsub //=.
rewrite -(sdprod_modl defG) ?sub_cosetpre //=; congr (_ ><| _).
by rewrite quotientK ?(subset_trans skerH) // -group_modr //= setIC tiKH mul1g.
Qed.

Lemma cforder_sdprod phi : #[cfSdprod phi]%CF = #[phi]%CF.
Proof. by apply: cforder_inj_rmorph cfSdprod_inj. Qed.

End SDproduct.

Section DProduct. 

Variables (gT : finGroupType) (G K H : {group gT}).
Hypothesis KxH : K \x H = G.

Lemma reindex_dprod R idx (op : Monoid.com_law idx) (F : gT -> R) :
   \big[op/idx]_(g in G) F g =
      \big[op/idx]_(k in K) \big[op/idx]_(h in H) F (k * h)%g.
Proof.
have /mulgmP/misomP[fM /isomP[injf im_f]] := KxH.
rewrite pair_big_dep -im_f morphimEdom big_imset; last exact/injmP.
by apply: eq_big => [][x y]; rewrite ?inE.
Qed.

Definition cfDprodr := cfSdprod (dprodWsd KxH).
Definition cfDprodl := cfSdprod (dprodWsdC KxH).
Definition cfDprod phi psi := cfDprodl phi * cfDprodr psi.

Canonical cfDprodl_additive := [additive of cfDprodl].
Canonical cfDprodl_linear := [linear of cfDprodl].
Canonical cfDprodl_rmorphism := [rmorphism of cfDprodl].
Canonical cfDprodl_lrmorphism := [lrmorphism of cfDprodl].
Canonical cfDprodr_additive := [additive of cfDprodr].
Canonical cfDprodr_linear := [linear of cfDprodr].
Canonical cfDprodr_rmorphism := [rmorphism of cfDprodr].
Canonical cfDprodr_lrmorphism := [lrmorphism of cfDprodr].

Lemma cfDprodl1 phi : cfDprodl phi 1%g = phi 1%g. Proof. exact: cfSdprod1. Qed.
Lemma cfDprodr1 psi : cfDprodr psi 1%g = psi 1%g. Proof. exact: cfSdprod1. Qed.
Lemma cfDprod1 phi psi : cfDprod phi psi 1%g = phi 1%g * psi 1%g.
Proof. by rewrite cfunE /= !cfSdprod1. Qed.

Lemma cfDprodl_eq1 phi : (cfDprodl phi == 1) = (phi == 1).
Proof. exact: cfSdprod_eq1. Qed.
Lemma cfDprodr_eq1 psi : (cfDprodr psi == 1) = (psi == 1).
Proof. exact: cfSdprod_eq1. Qed.

Lemma cfDprod_cfun1r phi : cfDprod phi 1 = cfDprodl phi.
Proof. by rewrite /cfDprod rmorph1 mulr1. Qed.
Lemma cfDprod_cfun1l psi : cfDprod 1 psi = cfDprodr psi.
Proof. by rewrite /cfDprod rmorph1 mul1r. Qed.
Lemma cfDprod_cfun1 : cfDprod 1 1 = 1.
Proof. by rewrite cfDprod_cfun1l rmorph1. Qed.
Lemma cfDprod_split phi psi : cfDprod phi psi = cfDprod phi 1 * cfDprod 1 psi.
Proof. by rewrite cfDprod_cfun1l cfDprod_cfun1r. Qed.

Let nsKG : K <| G. Proof. by have [] := dprod_normal2 KxH. Qed.
Let nsHG : H <| G. Proof. by have [] := dprod_normal2 KxH. Qed.
Let cKH : H \subset 'C(K). Proof. by have [] := dprodP KxH. Qed.
Let sKG := normal_sub nsKG.
Let sHG := normal_sub nsHG.

Lemma cfDprodlK : cancel cfDprodl 'Res[K]. Proof. exact: cfSdprodK. Qed.
Lemma cfDprodrK : cancel cfDprodr 'Res[H]. Proof. exact: cfSdprodK. Qed.

Lemma cfker_dprodl phi : cfker phi \x H = cfker (cfDprodl phi).
Proof.
by rewrite dprodC -sdprod_cfker dprodEsd // centsC (centsS (cfker_sub _)).
Qed.

Lemma cfker_dprodr psi : K \x cfker psi = cfker (cfDprodr psi).
Proof. by rewrite -sdprod_cfker dprodEsd // (subset_trans (cfker_sub _)). Qed.

Lemma cfDprodEl phi : {in K & H, forall k h, cfDprodl phi (k * h)%g = phi k}.
Proof. by move=> k h Kk Hh /=; rewrite -(centsP cKH) // cfSdprodE. Qed.

Lemma cfDprodEr psi : {in K & H, forall k h, cfDprodr psi (k * h)%g = psi h}.
Proof. exact: cfSdprodE. Qed.

Lemma cfDprodE phi psi :
  {in K & H, forall h k, cfDprod phi psi (h * k)%g = phi h * psi k}.
Proof. by move=> k h Kk Hh /=; rewrite cfunE cfDprodEl ?cfDprodEr. Qed.

Lemma cfDprod_Resl phi psi : 'Res[K] (cfDprod phi psi) = psi 1%g *: phi.
Proof.
by apply/cfun_inP=> x Kx; rewrite cfunE cfResE // -{1}[x]mulg1 mulrC cfDprodE.
Qed.

Lemma cfDprod_Resr phi psi : 'Res[H] (cfDprod phi psi) = phi 1%g *: psi.
Proof.
by apply/cfun_inP=> y Hy; rewrite cfunE cfResE // -{1}[y]mul1g cfDprodE.
Qed.

Lemma cfDprodKl (psi : 'CF(H)) : psi 1%g = 1 -> cancel (cfDprod^~ psi) 'Res.
Proof. by move=> psi1 phi; rewrite cfDprod_Resl psi1 scale1r. Qed.

Lemma cfDprodKr (phi : 'CF(K)) : phi 1%g = 1 -> cancel (cfDprod phi) 'Res.
Proof. by move=> phi1 psi; rewrite cfDprod_Resr phi1 scale1r. Qed.

(* Note that equality holds here iff either cfker phi = K and cfker psi = H,  *)
(* or else phi != 0, psi != 0 and coprime #|K : cfker phi| #|H : cfker phi|.  *)
Lemma cfker_dprod phi psi :
  cfker phi <*> cfker psi \subset cfker (cfDprod phi psi).
Proof.
rewrite -genM_join gen_subG; apply/subsetP=> _ /mulsgP[x y kKx kHy ->] /=.
have [[Kx _] [Hy _]] := (setIdP kKx, setIdP kHy).
have Gxy: (x * y)%g \in G by rewrite -(dprodW KxH) mem_mulg.
rewrite inE Gxy; apply/forallP=> g.
have [Gg | G'g] := boolP (g \in G); last by rewrite !cfun0 1?groupMl.
have{g Gg} [k [h [Kk Hh -> _]]] := mem_dprod KxH Gg.
rewrite mulgA -(mulgA x) (centsP cKH y) // mulgA -mulgA !cfDprodE ?groupM //.
by rewrite !cfkerMl.
Qed.

Lemma cfdot_dprod phi1 phi2 psi1 psi2 :
  '[cfDprod phi1 psi1, cfDprod phi2 psi2] = '[phi1, phi2] * '[psi1, psi2].
Proof.
rewrite !cfdotE mulrCA -mulrA mulrCA mulrA -invfM -natrM (dprod_card KxH).
congr (_ * _); rewrite big_distrl reindex_dprod /=; apply: eq_bigr => k Kk.
rewrite big_distrr; apply: eq_bigr => h Hh /=.
by rewrite mulrCA -mulrA -rmorphM mulrCA mulrA !cfDprodE.
Qed.

Lemma cfDprodl_iso : isometry cfDprodl.
Proof.
by move=> phi1 phi2; rewrite -!cfDprod_cfun1r cfdot_dprod cfnorm1 mulr1.
Qed.

Lemma cfDprodr_iso : isometry cfDprodr.
Proof.
by move=> psi1 psi2; rewrite -!cfDprod_cfun1l cfdot_dprod cfnorm1 mul1r.
Qed.

Lemma cforder_dprodl phi : #[cfDprodl phi]%CF = #[phi]%CF.
Proof. exact: cforder_sdprod. Qed.

Lemma cforder_dprodr psi : #[cfDprodr psi]%CF = #[psi]%CF.
Proof. exact: cforder_sdprod. Qed.

End DProduct.

Lemma cfDprodC (gT : finGroupType) (G K H : {group gT})
               (KxH : K \x H = G) (HxK : H \x K = G) chi psi :
  cfDprod KxH chi psi = cfDprod HxK psi chi.
Proof.
rewrite /cfDprod mulrC.
by congr (_ * _); congr (cfSdprod _ _); apply: eq_irrelevance.
Qed.

Section Bigdproduct.

Variables (gT : finGroupType) (I : finType) (P : pred I).
Variables (A : I -> {group gT}) (G : {group gT}).
Hypothesis defG : \big[dprod/1%g]_(i | P i) A i = G.

Let sAG i : P i -> A i \subset G.
Proof. by move=> Pi; rewrite -(bigdprodWY defG) (bigD1 i) ?joing_subl. Qed.

Fact cfBigdprodi_subproof i :
  gval (if P i then A i else 1%G) \x <<\bigcup_(j | P j && (j != i)) A j>> = G.
Proof.
have:= defG; rewrite fun_if big_mkcond (bigD1 i) // -big_mkcondl /= => defGi.
by have [[_ Gi' _ defGi']] := dprodP defGi; rewrite (bigdprodWY defGi') -defGi'.
Qed.
Definition cfBigdprodi i := cfDprodl (cfBigdprodi_subproof i) \o 'Res[_, A i].

Canonical cfBigdprodi_additive i := [additive of @cfBigdprodi i].
Canonical cfBigdprodi_linear i := [linear of @cfBigdprodi i].
Canonical cfBigdprodi_rmorphism i := [rmorphism of @cfBigdprodi i].
Canonical cfBigdprodi_lrmorphism i := [lrmorphism of @cfBigdprodi i].

Lemma cfBigdprodi1 i (phi : 'CF(A i)) : cfBigdprodi phi 1%g = phi 1%g.
Proof. by rewrite cfDprodl1 cfRes1. Qed.

Lemma cfBigdprodi_eq1 i (phi : 'CF(A i)) :
  P i -> (cfBigdprodi phi == 1) = (phi == 1).
Proof. by move=> Pi; rewrite cfSdprod_eq1 Pi cfRes_id. Qed.

Lemma cfBigdprodiK i : P i -> cancel (@cfBigdprodi i) 'Res[A i].
Proof.
move=> Pi phi; have:= cfDprodlK (cfBigdprodi_subproof i) ('Res phi).
by rewrite -[cfDprodl _ _]/(cfBigdprodi phi) Pi cfRes_id.
Qed.

Lemma cfBigdprodi_inj i : P i -> injective (@cfBigdprodi i).
Proof. by move/cfBigdprodiK; apply: can_inj. Qed.

Lemma cfBigdprodEi i (phi : 'CF(A i)) x :
    P i -> (forall j, P j -> x j \in A j) ->
  cfBigdprodi phi (\prod_(j | P j) x j)%g = phi (x i).
Proof.
set r := enum P => Pi /forall_inP; have r_i: i \in r by rewrite mem_enum.
have:= bigdprodWcp defG; rewrite -big_andE -!(big_filter _ P) filter_index_enum.
rewrite -/r big_all => defGr /allP Ax.
rewrite (perm_bigcprod defGr Ax (perm_to_rem r_i)) big_cons cfDprodEl ?Pi //.
- by rewrite cfRes_id.
- by rewrite Ax.
rewrite big_seq group_prod // => j; rewrite mem_rem_uniq ?enum_uniq //.
case/andP=> i'j /= r_j; apply/mem_gen/bigcupP; exists j; last exact: Ax.
by rewrite -[P j](mem_enum P) r_j.
Qed.

Lemma cfBigdprodi_iso i : P i -> isometry (@cfBigdprodi i).
Proof. by move=> Pi phi psi; rewrite cfDprodl_iso Pi !cfRes_id. Qed. 

Definition cfBigdprod (phi : forall i, 'CF(A i)) :=
  \prod_(i | P i) cfBigdprodi (phi i).

Lemma cfBigdprodE phi x :
    (forall i, P i -> x i \in A i) ->
  cfBigdprod phi (\prod_(i | P i) x i)%g = \prod_(i | P i) phi i (x i).
Proof.
move=> Ax; rewrite prod_cfunE; last by rewrite -(bigdprodW defG) mem_prodg.
by apply: eq_bigr => i Pi; rewrite cfBigdprodEi.
Qed.

Lemma cfBigdprod1 phi : cfBigdprod phi 1%g = \prod_(i | P i) phi i 1%g.
Proof. by rewrite prod_cfunE //; apply/eq_bigr=> i _; apply: cfBigdprodi1. Qed.

Lemma cfBigdprodK phi (Phi := cfBigdprod phi) i (a := phi i 1%g / Phi 1%g) :
  Phi 1%g != 0 -> P i -> a != 0 /\ a *: 'Res[A i] Phi = phi i.
Proof.
move=> nzPhi Pi; split.
  rewrite mulf_neq0 ?invr_eq0 // (contraNneq _ nzPhi) // => phi_i0.
  by rewrite cfBigdprod1 (bigD1 i) //= phi_i0 mul0r.
apply/cfun_inP=> x Aix; rewrite cfunE cfResE ?sAG // mulrAC.
have {1}->: x = (\prod_(j | P j) (if j == i then x else 1))%g.
  rewrite -big_mkcondr (big_pred1 i) ?eqxx // => j /=.
  by apply: andb_idl => /eqP->.
rewrite cfBigdprodE => [|j _]; last by case: eqP => // ->.
apply: canLR (mulfK nzPhi) _; rewrite cfBigdprod1 !(bigD1 i Pi) /= eqxx.
by rewrite mulrCA !mulrA; congr (_ * _); apply: eq_bigr => j /andP[_ /negPf->].
Qed.

Lemma cfdot_bigdprod phi psi :
  '[cfBigdprod phi, cfBigdprod psi] = \prod_(i | P i) '[phi i, psi i].
Proof.
apply: canLR (mulKf (neq0CG G)) _; rewrite -(bigdprod_card defG).
rewrite (big_morph _ (@natrM _) (erefl _)) -big_split /=.
rewrite (eq_bigr _ (fun i _ => mulVKf (neq0CG _) _)) (big_distr_big_dep 1%g) /=.
set F := pfamily _ _ _; pose h (f : {ffun I -> gT}) := (\prod_(i | P i) f i)%g.
pose is_hK x f := forall f1, (f1 \in F) && (h f1 == x) = (f == f1).
have /fin_all_exists[h1 Dh1] x: exists f, x \in G -> is_hK x f.
  case Gx: (x \in G); last by exists [ffun _ => x].
  have [f [Af fK Uf]] := mem_bigdprod defG Gx.
  exists [ffun i => if P i then f i else 1%g] => _ f1.
  apply/andP/eqP=> [[/pfamilyP[Pf1 Af1] /eqP Dx] | <-].
    by apply/ffunP=> i; rewrite ffunE; case: ifPn => [/Uf-> | /(supportP Pf1)].
  split; last by rewrite fK; apply/eqP/eq_bigr=> i Pi; rewrite ffunE Pi.
  by apply/familyP=> i; rewrite ffunE !unfold_in; case: ifP => //= /Af.
rewrite (reindex_onto h h1) /= => [|x /Dh1/(_ (h1 x))]; last first.
  by rewrite eqxx => /andP[_ /eqP].
apply/eq_big => [f | f /andP[/Dh1<- /andP[/pfamilyP[_ Af] _]]]; last first.
  by rewrite !cfBigdprodE // rmorph_prod -big_split /=.
apply/idP/idP=> [/andP[/Dh1<-] | Ff]; first by rewrite eqxx andbT.
have /pfamilyP[_ Af] := Ff; suffices Ghf: h f \in G by rewrite -Dh1 ?Ghf ?Ff /=.
by apply/group_prod=> i Pi; rewrite (subsetP (sAG Pi)) ?Af.
Qed.

End Bigdproduct.

Section MorphIsometry.

Variable gT : finGroupType.
Implicit Types (D G H K : {group gT}) (aT rT : finGroupType).

Lemma cfMorph_iso aT rT (G D : {group aT}) (f : {morphism D >-> rT}) :
  G \subset D -> isometry (cfMorph : 'CF(f @* G) -> 'CF(G)).
Proof.
move=> sGD phi psi; rewrite !cfdotE card_morphim (setIidPr sGD).
rewrite -(LagrangeI G ('ker f)) /= mulnC natrM invfM -mulrA.
congr (_ * _); apply: (canLR (mulKf (neq0CG _))).
rewrite mulr_sumr (partition_big_imset f) /= -morphimEsub //.
apply: eq_bigr => _ /morphimP[x Dx Gx ->].
rewrite -(card_rcoset _ x) mulr_natl -sumr_const.
apply/eq_big => [y | y /andP[Gy /eqP <-]]; last by rewrite !cfMorphE.
rewrite mem_rcoset inE groupMr ?groupV // -mem_rcoset.
by apply: andb_id2l => /(subsetP sGD) Dy; apply: sameP eqP (rcoset_kerP f _ _).
Qed.

Lemma cfIsom_iso rT G (R : {group rT}) (f : {morphism G >-> rT}) :
  forall isoG : isom G R f, isometry (cfIsom isoG).
Proof.
move=> isoG phi psi; rewrite unlock cfMorph_iso //; set G1 := _ @* R.
by rewrite -(isom_im (isom_sym isoG)) -/G1 in phi psi *; rewrite !cfRes_id.
Qed.

Lemma cfMod_iso H G : H <| G -> isometry (@cfMod _ G H).
Proof. by case/andP=> _; apply: cfMorph_iso. Qed.

Lemma cfQuo_iso H G :
  H <| G -> {in [pred phi | H \subset cfker phi] &, isometry (@cfQuo _ G H)}.
Proof.
by move=> nsHG phi psi sHkphi sHkpsi; rewrite -(cfMod_iso nsHG) !cfQuoK.
Qed.

Lemma cfnorm_quo H G phi :
  H <| G -> H \subset cfker phi -> '[phi / H] = '[phi]_G.
Proof. by move=> nsHG sHker; apply: cfQuo_iso. Qed.

Lemma cfSdprod_iso K H G (defG : K ><| H = G) : isometry (cfSdprod defG).
Proof.
move=> phi psi; have [/andP[_ nKG] _ _ _ _] := sdprod_context defG.
by rewrite [cfSdprod _]locked_withE cfMorph_iso ?cfIsom_iso.
Qed.

End MorphIsometry.

Section Induced.

Variable gT : finGroupType.

Section Def.

Variables B A : {set gT}.
Local Notation G := <<B>>.
Local Notation H := <<A>>.

(* The defalut value for the ~~ (H \subset G) case matches the one for cfRes *)
(* so that Frobenius reciprocity holds even in this degenerate case.         *)
Definition ffun_cfInd (phi : 'CF(A)) :=
  [ffun x => if H \subset G then #|A|%:R^-1 * (\sum_(y in G) phi (x ^ y))
                            else #|G|%:R * '[phi, 1] *+ (x == 1%g)].

Fact cfInd_subproof phi : is_class_fun G (ffun_cfInd phi).
Proof.
apply: intro_class_fun => [x y Gx Gy | x H'x]; last first.
  case: subsetP => [sHG | _]; last by rewrite (negPf (group1_contra H'x)).
  rewrite big1 ?mulr0 // => y Gy; rewrite cfun0gen ?(contra _ H'x) //= => /sHG.
  by rewrite memJ_norm ?(subsetP (normG _)).
rewrite conjg_eq1 (reindex_inj (mulgI y^-1)%g); congr (if _ then _ * _ else _).
by apply: eq_big => [z | z Gz]; rewrite ?groupMl ?groupV // -conjgM mulKVg.
Qed.
Definition cfInd phi := Cfun 1 (cfInd_subproof phi).

Lemma cfInd_is_linear : linear cfInd.
Proof.
move=> c phi psi; apply/cfunP=> x; rewrite !cfunElock; case: ifP => _.
  rewrite mulrCA -mulrDr [c * _]mulr_sumr -big_split /=.
  by congr (_ * _); apply: eq_bigr => y _; rewrite !cfunE.
rewrite mulrnAr -mulrnDl !(mulrCA c) -!mulrDr [c * _]mulr_sumr -big_split /=.
by congr (_ * (_ * _) *+ _); apply: eq_bigr => y; rewrite !cfunE mulrA mulrDl.
Qed.
Canonical cfInd_additive := Additive cfInd_is_linear.
Canonical cfInd_linear := Linear cfInd_is_linear.

End Def.

Local Notation "''Ind[' B , A ]" := (@cfInd B A) : ring_scope.
Local Notation "''Ind[' B ]" := 'Ind[B, _] : ring_scope.

Lemma cfIndE (G H : {group gT}) phi x :
  H \subset G -> 'Ind[G, H] phi x = #|H|%:R^-1 * (\sum_(y in G) phi (x ^ y)).
Proof. by rewrite cfunElock !genGid => ->. Qed.

Variables G K H : {group gT}.
Implicit Types (phi : 'CF(H)) (psi : 'CF(G)).

Lemma cfIndEout phi :
  ~~ (H \subset G) -> 'Ind[G] phi = (#|G|%:R * '[phi, 1]) *: '1_1%G.
Proof.
move/negPf=> not_sHG; apply/cfunP=> x; rewrite cfunE cfuniE ?normal1 // inE.
by rewrite mulr_natr cfunElock !genGid not_sHG.
Qed.

Lemma cfIndEsdprod (phi : 'CF(K)) x :
  K ><| H = G -> 'Ind[G] phi x = \sum_(w in H) phi (x ^ w)%g.
Proof.
move=> defG; have [/andP[sKG _] _ mulKH nKH _] := sdprod_context defG.
rewrite cfIndE //; apply: canLR (mulKf (neq0CG _)) _; rewrite -mulKH mulr_sumr.
rewrite (set_partition_big _ (rcosets_partition_mul H K)) ?big_imset /=.
  apply: eq_bigr => y Hy; rewrite rcosetE norm_rlcoset ?(subsetP nKH) //.
  rewrite -lcosetE mulr_natl big_imset /=; last exact: in2W (mulgI _).
  by rewrite -sumr_const; apply: eq_bigr => z Kz; rewrite conjgM cfunJ.
have [{nKH}nKH /isomP[injf _]] := sdprod_isom defG.
apply: can_in_inj (fun Ky => invm injf (coset K (repr Ky))) _ => y Hy.
by rewrite rcosetE -val_coset ?(subsetP nKH) // coset_reprK invmE.
Qed.

Lemma cfInd_on A phi :
  H \subset G -> phi \in 'CF(H, A) -> 'Ind[G] phi \in 'CF(G, class_support A G).
Proof.
move=> sHG Af; apply/cfun_onP=> g AG'g; rewrite cfIndE ?big1 ?mulr0 // => h Gh.
apply: (cfun_on0 Af); apply: contra AG'g => Agh.
by rewrite -[g](conjgK h) memJ_class_support // groupV.
Qed.

Lemma cfInd_id phi : 'Ind[H] phi = phi.
Proof.
apply/cfun_inP=> x Hx; rewrite cfIndE // (eq_bigr _ (cfunJ phi x)) sumr_const.
by rewrite -[phi x *+ _]mulr_natl mulKf ?neq0CG.
Qed.

Lemma cfInd_normal phi : H <| G -> 'Ind[G] phi \in 'CF(G, H).
Proof.
case/andP=> sHG nHG; apply: (cfun_onS (class_support_sub_norm (subxx _) nHG)).
by rewrite cfInd_on ?cfun_onG.
Qed.
 
Lemma cfInd1 phi : H \subset G -> 'Ind[G] phi 1%g = #|G : H|%:R * phi 1%g.
Proof.
move=> sHG; rewrite cfIndE // natf_indexg // -mulrA mulrCA; congr (_ * _).
by rewrite mulr_natl -sumr_const; apply: eq_bigr => x; rewrite conj1g.
Qed.

Lemma cfInd_cfun1 : H <| G -> 'Ind[G, H] 1 = #|G : H|%:R *: '1_H.
Proof.
move=> nsHG; have [sHG nHG] := andP nsHG; rewrite natf_indexg // mulrC.
apply/cfunP=> x; rewrite cfIndE ?cfunE ?cfuniE // -mulrA; congr (_ * _).
rewrite mulr_natl -sumr_const; apply: eq_bigr => y Gy.
by rewrite cfun1E -{1}(normsP nHG y Gy) memJ_conjg.
Qed.

Lemma cfnorm_Ind_cfun1 : H <| G -> '['Ind[G, H] 1] = #|G : H|%:R.
Proof.
move=> nsHG; rewrite cfInd_cfun1 // cfnormZ normr_nat cfdot_cfuni // setIid.
by rewrite expr2 {2}natf_indexg ?normal_sub // !mulrA divfK ?mulfK ?neq0CG.
Qed.

Lemma cfIndInd phi :
  K \subset G -> H \subset K -> 'Ind[G] ('Ind[K] phi) = 'Ind[G] phi.
Proof.
move=> sKG sHK; apply/cfun_inP=> x Gx; rewrite !cfIndE ?(subset_trans sHK) //.
apply: canLR (mulKf (neq0CG K)) _; rewrite mulr_sumr mulr_natl.
transitivity (\sum_(y in G) \sum_(z in K) #|H|%:R^-1 * phi ((x ^ y) ^ z)).
  by apply: eq_bigr => y Gy; rewrite cfIndE // -mulr_sumr.
symmetry; rewrite exchange_big /= -sumr_const; apply: eq_bigr => z Kz.
rewrite (reindex_inj (mulIg z)).
by apply: eq_big => [y | y _]; rewrite ?conjgM // groupMr // (subsetP sKG).
Qed.

(* This is Isaacs, Lemma (5.2). *)
Lemma Frobenius_reciprocity phi psi : '[phi, 'Res[H] psi] = '['Ind[G] phi, psi].
Proof.
have [sHG | not_sHG] := boolP (H \subset G); last first.
  rewrite cfResEout // cfIndEout // cfdotZr cfdotZl mulrAC; congr (_ * _).
  rewrite (cfdotEl _ (cfuni_on _ _)) mulVKf ?neq0CG // big_set1.
  by rewrite cfuniE ?normal1 ?set11 ?mul1r.
transitivity (#|H|%:R^-1 * \sum_(x in G) phi x * (psi x)^*).
  rewrite (big_setID H) /= (setIidPr sHG) addrC big1 ?add0r; last first.
    by move=> x /setDP[_ /cfun0->]; rewrite mul0r.
  by congr (_ * _); apply: eq_bigr => x Hx; rewrite cfResE.
set h' := _^-1; apply: canRL (mulKf (neq0CG G)) _.
transitivity (h' * \sum_(y in G) \sum_(x in G) phi (x ^ y) * (psi (x ^ y))^*).
  rewrite mulrCA mulr_natl -sumr_const; congr (_ * _); apply: eq_bigr => y Gy.
  by rewrite (reindex_acts 'J _ Gy) ?astabsJ ?normG.
rewrite exchange_big mulr_sumr; apply: eq_bigr => x _; rewrite cfIndE //=.
by rewrite -mulrA mulr_suml; congr (_ * _); apply: eq_bigr => y /(cfunJ psi)->.
Qed.
Definition cfdot_Res_r := Frobenius_reciprocity.

Lemma cfdot_Res_l psi phi : '['Res[H] psi, phi] = '[psi, 'Ind[G] phi].
Proof. by rewrite cfdotC cfdot_Res_r -cfdotC. Qed.

Lemma cfIndM phi psi:  H \subset G -> 
     'Ind[G] (phi * ('Res[H] psi)) = 'Ind[G] phi * psi.
Proof.
move=> HsG; apply/cfun_inP=> x Gx; rewrite !cfIndE // !cfunE !cfIndE // -mulrA.
congr (_ * _); rewrite mulr_suml; apply: eq_bigr=> i iG; rewrite !cfunE.
case:(boolP (x^i \in H))=> xJi; last by rewrite cfun0gen ?mul0r ?genGid.
by rewrite !cfResE //; congr (_*_); rewrite cfunJgen ?genGid.
Qed.

End Induced.

Arguments Scope cfInd [_ group_scope group_scope cfun_scope].
Notation "''Ind[' G , H ]" := (@cfInd _ G H) (only parsing) : ring_scope.
Notation "''Ind[' G ]" := 'Ind[G, _] : ring_scope.
Notation "''Ind'" := 'Ind[_] (only parsing) : ring_scope.

Section MorphInduced.

Variables (aT rT : finGroupType) (D G H : {group aT}) (R S : {group rT}).

Lemma cfIndMorph (f : {morphism D >-> rT}) (phi : 'CF(f @* H)) :
    'ker f \subset H -> H \subset G -> G \subset D ->
  'Ind[G] (cfMorph phi) = cfMorph ('Ind[f @* G] phi).
Proof.
move=> sKH sHG sGD; have [sHD inD] := (subset_trans sHG sGD, subsetP sGD).
apply/cfun_inP=> /= x Gx; have [Dx sKG] := (inD x Gx, subset_trans sKH sHG).
rewrite cfMorphE ?cfIndE ?morphimS // (partition_big_imset f) -morphimEsub //=.
rewrite card_morphim (setIidPr sHD) natf_indexg // invfM invrK -mulrA.
congr (_ * _); rewrite mulr_sumr; apply: eq_bigr => _ /morphimP[y Dy Gy ->].
rewrite -(card_rcoset _ y) mulr_natl -sumr_const.
apply: eq_big => [z | z /andP[Gz /eqP <-]].
  have [Gz | G'z] := boolP (z \in G).
    by rewrite (sameP eqP (rcoset_kerP _ _ _)) ?inD.
  by case: rcosetP G'z => // [[t Kt ->]]; rewrite groupM // (subsetP sKG).
have [Dz Dxz] := (inD z Gz, inD (x ^ z) (groupJ Gx Gz)); rewrite -morphJ //.
have [Hxz | notHxz] := boolP (x ^ z \in H); first by rewrite cfMorphE.
by rewrite !cfun0 // -sub1set -morphim_set1 // morphimSGK ?sub1set.
Qed.

Variables (g : {morphism G >-> rT}) (h : {morphism H >-> rT}).
Hypotheses (isoG : isom G R g) (isoH : isom H S h) (eq_hg : {in H, h =1 g}).
Hypothesis sHG : H \subset G.

Lemma cfResIsom phi : 'Res[S] (cfIsom isoG phi) = cfIsom isoH ('Res[H] phi).
Proof.
have [[injg defR] [injh defS]] := (isomP isoG, isomP isoH).
rewrite !morphimEdom in defS defR; apply/cfun_inP=> s.
rewrite -{1}defS => /imsetP[x Hx ->] {s}; have Gx := subsetP sHG x Hx.
rewrite {1}eq_hg ?(cfResE, cfIsomE) // -defS -?eq_hg ?mem_imset // -defR.
by rewrite (eq_in_imset eq_hg) imsetS.
Qed.

Lemma cfIndIsom phi : 'Ind[R] (cfIsom isoH phi) = cfIsom isoG ('Ind[G] phi).
Proof.
have [[injg defR] [_ defS]] := (isomP isoG, isomP isoH).
rewrite morphimEdom (eq_in_imset eq_hg) -morphimEsub // in defS.
apply/cfun_inP=> s; rewrite -{1}defR => /morphimP[x _ Gx ->]{s}.
rewrite cfIsomE ?cfIndE // -defR -{1}defS ?morphimS ?card_injm // morphimEdom.
congr (_ * _); rewrite big_imset //=; last exact/injmP.
apply: eq_bigr => y Gy; rewrite -morphJ //.
have [Hxy | H'xy] := boolP (x ^ y \in H); first by rewrite -eq_hg ?cfIsomE.
by rewrite !cfun0 -?defS // -sub1set -morphim_set1 ?injmSK ?sub1set // groupJ.
Qed.

End MorphInduced.

Section FieldAutomorphism.

Variables (u : {rmorphism algC -> algC}) (gT rT : finGroupType).
Variables (G K H : {group gT}) (f : {morphism G >-> rT}) (R : {group rT}).
Implicit Types (phi : 'CF(G)) (S : seq 'CF(G)).
Local Notation "phi ^u" := (cfAut u phi) (at level 3, format "phi ^u").

Lemma cfAutZ_nat n phi : (n%:R *: phi)^u = n%:R *: phi^u.
Proof. exact: raddfZnat. Qed.

Lemma cfAutZ_Cnat z phi : z \in Cnat -> (z *: phi)^u = z *: phi^u.
Proof. exact: raddfZ_Cnat. Qed.

Lemma cfAutZ_Cint z phi : z \in Cint -> (z *: phi)^u = z *: phi^u.
Proof. exact: raddfZ_Cint. Qed.

Lemma cfAutK : cancel (@cfAut gT G u) (cfAut (algC_invaut_rmorphism u)).
Proof. by move=> phi; apply/cfunP=> x; rewrite !cfunE /= algC_autK. Qed.

Lemma cfAutVK : cancel (cfAut (algC_invaut_rmorphism u)) (@cfAut gT G u).
Proof. by move=> phi; apply/cfunP=> x; rewrite !cfunE /= algC_invautK. Qed.

Lemma cfAut_inj : injective (@cfAut gT G u).
Proof. exact: can_inj cfAutK. Qed.

Lemma cfAut_eq1 phi : (cfAut u phi == 1) = (phi == 1).
Proof. by rewrite rmorph_eq1 //; apply: cfAut_inj. Qed.

Lemma support_cfAut phi : support phi^u =i support phi.
Proof. by move=> x; rewrite !inE cfunE fmorph_eq0. Qed.

Lemma map_cfAut_free S : cfAut_closed u S -> free S -> free (map (cfAut u) S).
Proof.
set Su := map _ S => sSuS freeS; have uniqS := free_uniq freeS.
have uniqSu: uniq Su by rewrite (map_inj_uniq cfAut_inj).
have{sSuS} sSuS: {subset Su <= S} by move=> _ /mapP[phi Sphi ->]; apply: sSuS.
have [|eqSuS _] := leq_size_perm uniqSu sSuS; first by rewrite size_map.
by rewrite (perm_free (uniq_perm_eq uniqSu uniqS eqSuS)).
Qed.

Lemma cfAut_on A phi : (phi^u \in 'CF(G, A)) = (phi \in 'CF(G, A)).
Proof. by rewrite !cfun_onE (eq_subset (support_cfAut phi)). Qed.

Lemma cfker_aut phi : cfker phi^u = cfker phi.
Proof.
apply/setP=> x; rewrite !inE; apply: andb_id2l => Gx.
by apply/forallP/forallP=> Kx y;
  have:= Kx y; rewrite !cfunE (inj_eq (fmorph_inj u)).
Qed.

Lemma cfAut_cfuni A : ('1_A)^u = '1_A :> 'CF(G).
Proof. by apply/cfunP=> x; rewrite !cfunElock rmorph_nat. Qed.

Lemma cforder_aut phi : #[phi^u]%CF = #[phi]%CF.
Proof. exact: cforder_inj_rmorph cfAut_inj. Qed.

Lemma cfAutRes phi : ('Res[H] phi)^u = 'Res phi^u.
Proof. by apply/cfunP=> x; rewrite !cfunElock rmorphMn. Qed.

Lemma cfAutMorph (psi : 'CF(f @* H)) : (cfMorph psi)^u = cfMorph psi^u.
Proof. by apply/cfun_inP=> x Hx; rewrite !cfunElock Hx. Qed.

Lemma cfAutIsom (isoGR : isom G R f) phi :
  (cfIsom isoGR phi)^u = cfIsom isoGR phi^u.
Proof.
apply/cfun_inP=> y; have [_ {1}<-] := isomP isoGR => /morphimP[x _ Gx ->{y}].
by rewrite !(cfunE, cfIsomE).
Qed.

Lemma cfAutQuo phi : (phi / H)^u = (phi^u / H)%CF.
Proof. by apply/cfunP=> Hx; rewrite !cfunElock cfker_aut rmorphMn. Qed.

Lemma cfAutMod (psi : 'CF(G / H)) : (psi %% H)^u = (psi^u %% H)%CF.
Proof. by apply/cfunP=> x; rewrite !cfunElock rmorphMn. Qed.

Lemma cfAutInd (psi : 'CF(H)) : ('Ind[G] psi)^u = 'Ind psi^u.
Proof.
have [sHG | not_sHG] := boolP (H \subset G).
  apply/cfunP=> x; rewrite !(cfunE, cfIndE) // rmorphM fmorphV rmorph_nat.
  by congr (_ * _); rewrite rmorph_sum; apply: eq_bigr => y; rewrite !cfunE.
rewrite !cfIndEout // linearZ /= cfAut_cfuni rmorphM rmorph_nat.
rewrite -cfdot_cfAut ?rmorph1 // => _ /imageP[x Hx ->].
by rewrite cfun1E Hx !rmorph1.
Qed.

Hypothesis KxH : K \x H = G.

Lemma cfAutDprodl (phi : 'CF(K)) : (cfDprodl KxH phi)^u = cfDprodl KxH phi^u.
Proof.
apply/cfun_inP=> _ /(mem_dprod KxH)[x [y [Kx Hy -> _]]].
by rewrite !(cfunE, cfDprodEl).
Qed.

Lemma cfAutDprodr (psi : 'CF(H)) : (cfDprodr KxH psi)^u = cfDprodr KxH psi^u.
Proof.
apply/cfun_inP=> _ /(mem_dprod KxH)[x [y [Kx Hy -> _]]].
by rewrite !(cfunE, cfDprodEr).
Qed.

Lemma cfAutDprod (phi : 'CF(K)) (psi : 'CF(H)) :
  (cfDprod KxH phi psi)^u = cfDprod KxH phi^u psi^u.
Proof. by rewrite rmorphM /= cfAutDprodl cfAutDprodr. Qed.

End FieldAutomorphism.

Implicit Arguments cfAutK [[gT] [G]].
Implicit Arguments cfAutVK [[gT] [G]].
Implicit Arguments cfAut_inj [gT G x1 x2].

Definition conj_cfRes := cfAutRes conjC.
Definition cfker_conjC := cfker_aut conjC.
Definition conj_cfQuo := cfAutQuo conjC.
Definition conj_cfMod := cfAutMod conjC.
Definition conj_cfInd := cfAutInd conjC.
Definition cfconjC_eq1 := cfAut_eq1 conjC.