Timings for commutator.v

(* (c) Copyright 2006-2015 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat fintype bigop finset.
From mathcomp
Require Import binomial fingroup morphism automorphism quotient gfunctor.

(******************************************************************************)
(*   This files contains the proofs of several key properties of commutators, *)
(* including the Hall-Witt identity and the Three Subgroup Lemma.             *)
(*   The definition and notation for both pointwise and set wise commutators  *)
(* ([~x, y, ...] and [~: A, B ,...], respectively) are given in fingroup.v    *)
(* This file defines the derived group series:                                *)
(*           G^`(0) ==  G                                                     *)
(*       G^`(n.+1) == [~: G^`(n), G^`(n)]                                     *)
(* as several classical results involve the (first) derived group G^`(1),     *)
(* such as the equivalence H <| G /\ G / H abelian <-> G^`(1) \subset H.      *)
(* The connection between the derived series and solvable groups will only be *)
(* established in nilpotent.v, however.                                       *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GroupScope.

Definition derived_at_rec n (gT : finGroupType) (A : {set gT}) :=
  iter n (fun B => [~: B, B]) A.

(* Note: 'nosimpl' MUST be used outside of a section -- the end of section   *)
(* "cooking" destroys it.                                                    *)
Definition derived_at := nosimpl derived_at_rec.

Arguments Scope derived_at [nat_scope _ group_scope].
Notation "G ^` ( n )" := (derived_at n G) : group_scope.

Section DerivedBasics.

Variables gT : finGroupType.
Implicit Type A : {set gT}.
Implicit Types G : {group gT}.

Lemma derg0 A : A^`(0) = A. Proof. by []. Qed.
Lemma derg1 A : A^`(1) = [~: A, A]. Proof. by []. Qed.
Lemma dergSn n A : A^`(n.+1) = [~: A^`(n), A^`(n)]. Proof. by []. Qed.

Lemma der_group_set G n : group_set G^`(n).
Proof. by case: n => [|n]; apply: groupP. Qed.

Canonical derived_at_group G n := Group (der_group_set G n).

End DerivedBasics.

Notation "G ^` ( n )" := (derived_at_group G n) : Group_scope.

Section Basic_commutator_properties.

Variable gT : finGroupType.
Implicit Types x y z : gT.

Lemma conjg_mulR x y : x ^ y = x * [~ x, y].
Proof. by rewrite mulKVg. Qed.

Lemma conjg_Rmul x y : x ^ y = [~ y, x^-1] * x.
Proof. by rewrite commgEr invgK mulgKV. Qed.

Lemma commMgJ x y z : [~ x * y, z] = [~ x, z] ^ y * [~ y, z].
Proof. by rewrite !commgEr conjgM mulgA -conjMg mulgK. Qed.

Lemma commgMJ x y z : [~ x, y * z] = [~ x, z] * [~ x, y] ^ z.
Proof. by rewrite !commgEl conjgM -mulgA -conjMg mulKVg. Qed.

Lemma commMgR x y z : [~ x * y, z] = [~ x, z] * [~ x, z, y] * [~ y, z].
Proof. by rewrite commMgJ conjg_mulR. Qed.

Lemma commgMR x y z : [~ x, y * z] = [~ x, z] * [~ x, y] * [~ x, y, z].
Proof. by rewrite commgMJ conjg_mulR mulgA. Qed.

Lemma Hall_Witt_identity x y z :
  [~ x, y^-1, z] ^ y * [~ y, z^-1, x] ^ z * [~ z, x^-1, y] ^ x = 1.
Proof. (* gsimpl *)
pose a x y z : gT := x * z * y ^ x.
suffices{x y z} hw_aux x y z: [~ x, y^-1, z] ^ y = (a x y z)^-1 * (a y z x).
  by rewrite !hw_aux 2!mulgA !mulgK mulVg.
by rewrite commgEr conjMg -conjgM -conjg_Rmul 2!invMg conjgE !mulgA.
Qed.

(* the following properties are useful for studying p-groups of class 2 *)

Section LeftComm.

Variables (i : nat) (x y : gT).
Hypothesis cxz : commute x [~ x, y].

Lemma commVg : [~ x^-1, y] = [~ x, y]^-1.
Proof.
apply/eqP; rewrite commgEl eq_sym eq_invg_mul invgK mulgA -cxz.
by rewrite -conjg_mulR -conjMg mulgV conj1g.
Qed.

Lemma commXg : [~ x ^+ i, y] = [~ x, y] ^+ i.
Proof.
elim: i => [|i' IHi]; first exact: comm1g.
by rewrite !expgS commMgJ /conjg commuteX // mulKg IHi.
Qed.

End LeftComm.

Section RightComm.

Variables (i : nat) (x y : gT).
Hypothesis cyz : commute y [~ x, y].
Let cyz' := commuteV cyz.

Lemma commgV : [~ x, y^-1] = [~ x, y]^-1.
Proof. by rewrite -invg_comm commVg -(invg_comm x y) ?invgK. Qed.

Lemma commgX : [~ x, y ^+ i] = [~ x, y] ^+ i.
Proof. by rewrite -invg_comm commXg -(invg_comm x y) ?expgVn ?invgK. Qed.

End RightComm.

Section LeftRightComm.

Variables (i j : nat) (x y : gT).
Hypotheses (cxz : commute x [~ x, y]) (cyz : commute y [~ x, y]).

Lemma commXXg : [~ x ^+ i, y ^+ j] = [~ x, y] ^+ (i * j).
Proof. by rewrite expgM commgX commXg //; apply: commuteX. Qed.

Lemma expMg_Rmul : (y * x) ^+ i = y ^+ i * x ^+ i * [~ x, y] ^+ 'C(i, 2).
Proof.
rewrite -triangular_sum; symmetry.
elim: i => [|k IHk] /=; first by rewrite big_geq ?mulg1.
rewrite big_nat_recr //= addnC expgD !expgS -{}IHk !mulgA; congr (_ * _).
by rewrite -!mulgA commuteX2 // -commgX // [mulg y]lock 3!mulgA -commgC.
Qed.

End LeftRightComm.

End Basic_commutator_properties.

(***** Set theoretic commutators *****)
Section Commutator_properties.

Variable gT : finGroupType.
Implicit Type (rT : finGroupType) (A B C : {set gT}) (D G H K : {group gT}).

Lemma commG1 A : [~: A, 1] = 1.
Proof. by apply/commG1P; rewrite centsC sub1G. Qed.

Lemma comm1G A : [~: 1, A] = 1.
Proof. by rewrite commGC commG1. Qed.

Lemma commg_sub A B : [~: A, B] \subset A <*> B.
Proof. by rewrite comm_subG // (joing_subl, joing_subr). Qed.

Lemma commg_norml G A : G \subset 'N([~: G, A]).
Proof.
apply/subsetP=> x Gx; rewrite inE -genJ gen_subG.
apply/subsetP=> _ /imsetP[_ /imset2P[y z Gy Az ->] ->].
by rewrite -(mulgK [~ x, z] (_ ^ x)) -commMgJ !(mem_commg, groupMl, groupV).
Qed.

Lemma commg_normr G A : G \subset 'N([~: A, G]).
Proof. by rewrite commGC commg_norml. Qed.

Lemma commg_norm G H : G <*> H \subset 'N([~: G, H]).
Proof. by rewrite join_subG ?commg_norml ?commg_normr. Qed.

Lemma commg_normal G H : [~: G, H] <| G <*> H.
Proof. by rewrite /(_ <| _) commg_sub commg_norm. Qed.

Lemma normsRl A G B : A \subset G -> A \subset 'N([~: G, B]).
Proof. by move=> sAG; apply: subset_trans (commg_norml G B). Qed.

Lemma normsRr A G B : A \subset G -> A \subset 'N([~: B, G]).
Proof. by move=> sAG; apply: subset_trans (commg_normr G B). Qed.

Lemma commg_subr G H : ([~: G, H] \subset H) = (G \subset 'N(H)).
Proof.
rewrite gen_subG; apply/subsetP/subsetP=> [sRH x Gx | nGH xy].
  rewrite inE; apply/subsetP=> _ /imsetP[y Ky ->].
  by rewrite conjg_Rmul groupMr // sRH // mem_imset2 ?groupV.
case/imset2P=> x y Gx Hy ->{xy}.
by rewrite commgEr groupMr // memJ_norm (groupV, nGH).
Qed.

Lemma commg_subl G H : ([~: G, H] \subset G) = (H \subset 'N(G)).
Proof. by rewrite commGC commg_subr. Qed.

Lemma commg_subI A B G H :
  A \subset 'N_G(H) -> B \subset 'N_H(G) -> [~: A, B] \subset G :&: H.
Proof.
rewrite !subsetI -(gen_subG _ 'N(G)) -(gen_subG _ 'N(H)).
rewrite -commg_subr -commg_subl; case/andP=> sAG sRH; case/andP=> sBH sRG.
by rewrite (subset_trans _ sRG) ?(subset_trans _ sRH) ?commgSS ?subset_gen.
Qed.

Lemma quotient_cents2 A B K :
    A \subset 'N(K) -> B \subset 'N(K) ->
  (A / K \subset 'C(B / K)) = ([~: A, B] \subset K).
Proof.
move=> nKA nKB.
by rewrite (sameP commG1P trivgP) /= -quotientR // quotient_sub1 // comm_subG.
Qed.

Lemma quotient_cents2r A B K :
  [~: A, B] \subset K -> (A / K) \subset 'C(B / K).
Proof.
move=> sABK; rewrite -2![_ / _]morphimIdom -!quotientE.
by rewrite quotient_cents2 ?subsetIl ?(subset_trans _ sABK) ?commgSS ?subsetIr.
Qed.

Lemma sub_der1_norm G H : G^`(1) \subset H -> H \subset G -> G \subset 'N(H).
Proof.
by move=> sG'H sHG; rewrite -commg_subr (subset_trans _ sG'H) ?commgS.
Qed.

Lemma sub_der1_normal G H : G^`(1) \subset H -> H \subset G -> H <| G.
Proof. by move=> sG'H sHG; rewrite /(H <| G) sHG sub_der1_norm. Qed.

Lemma sub_der1_abelian G H : G^`(1) \subset H -> abelian (G / H).
Proof. by move=> sG'H; apply: quotient_cents2r. Qed.

Lemma der1_min G H : G \subset 'N(H) -> abelian (G / H) -> G^`(1) \subset H.
Proof. by move=> nHG abGH; rewrite -quotient_cents2. Qed.

Lemma der_abelian n G : abelian (G^`(n) / G^`(n.+1)).
Proof. by rewrite sub_der1_abelian // der_subS. Qed.

Lemma commg_normSl G H K : G \subset 'N(H) -> [~: G, H] \subset 'N([~: K, H]).
Proof. by move=> nHG; rewrite normsRr // commg_subr. Qed.

Lemma commg_normSr G H K : G \subset 'N(H) -> [~: H, G] \subset 'N([~: H, K]).
Proof. by move=> nHG; rewrite !(commGC H) commg_normSl. Qed.

Lemma commMGr G H K : [~: G, K] * [~: H, K] \subset [~: G * H , K].
Proof. by rewrite mul_subG ?commSg ?(mulG_subl, mulG_subr). Qed.

Lemma commMG G H K :
  H \subset 'N([~: G, K]) -> [~: G * H , K] = [~: G, K] * [~: H, K].
Proof.
move=> nRH; apply/eqP; rewrite eqEsubset commMGr andbT.
have nRHK: [~: H, K] \subset 'N([~: G, K]) by rewrite comm_subG ?commg_normr.
have defM := norm_joinEr nRHK; rewrite -defM gen_subG /=.
apply/subsetP=> _ /imset2P[_ z /imset2P[x y Gx Hy ->] Kz ->].
by rewrite commMgJ {}defM mem_mulg ?memJ_norm ?mem_commg // (subsetP nRH).
Qed.

Lemma comm3G1P A B C :
  reflect {in A & B & C, forall h k l, [~ h, k, l] = 1} ([~: A, B, C] :==: 1).
Proof.
have R_C := sameP trivgP commG1P.
rewrite -subG1 R_C gen_subG -{}R_C gen_subG.
apply: (iffP subsetP) => [cABC x y z Ax By Cz | cABC xyz].
  by apply/set1P; rewrite cABC // !mem_imset2.
by case/imset2P=> _ z /imset2P[x y Ax By ->] Cz ->; rewrite cABC.
Qed.

Lemma three_subgroup G H K :
  [~: G, H, K] :=: 1 -> [~: H, K, G] :=: 1-> [~: K, G, H] :=: 1.
Proof.
move/eqP/comm3G1P=> cGHK /eqP/comm3G1P cHKG.
apply/eqP/comm3G1P=> x y z Kx Gy Hz; symmetry.
rewrite -(conj1g y) -(Hall_Witt_identity y^-1 z x) invgK.
by rewrite cGHK ?groupV // cHKG ?groupV // !conj1g !mul1g conjgKV.
Qed.

Lemma der1_joing_cycles (x y : gT) : 
  let XY := <[x]> <*> <[y]> in let xy := [~ x, y] in
  xy \in 'C(XY) -> XY^`(1) = <[xy]>.
Proof. 
rewrite joing_idl joing_idr /= -sub_cent1 => /norms_gen nRxy.
apply/eqP; rewrite eqEsubset cycle_subG mem_commg ?mem_gen ?set21 ?set22 //.
rewrite der1_min // quotient_gen -1?gen_subG // quotientU abelian_gen.
rewrite /abelian subUset centU !subsetI andbC centsC -andbA -!abelianE.
rewrite !quotient_abelian ?(abelianS (subset_gen _) (cycle_abelian _)) //=.
by rewrite andbb quotient_cents2r ?genS // /commg_set imset2_set1l imset_set1.
Qed.

Lemma commgAC G x y z : x \in G -> y \in G -> z \in G ->
  commute y z -> abelian [~: [set x], G] -> [~ x, y, z] = [~ x, z, y].
Proof.
move=> Gx Gy Gz cyz /centsP cRxG; pose cx' u := [~ x^-1, u].
have xR3 u v: [~ x, u, v] = x^-1 * (cx' u * cx' v) * x ^ (u * v).
  rewrite mulgA -conjg_mulR conjVg [cx' v]commgEl mulgA -invMg.
  by rewrite -mulgA conjgM -conjMg -!commgEl.
suffices RxGcx' u: u \in G -> cx' u \in [~: [set x], G].
  by rewrite !xR3 {}cyz; congr (_ * _ * _); rewrite cRxG ?RxGcx'.
move=> Gu; suffices/groupMl <-: [~ x, u] ^ x^-1 \in [~: [set x], G].
  by rewrite -commMgJ mulgV comm1g group1.
by rewrite memJ_norm ?mem_commg ?set11 // groupV (subsetP (commg_normr _ _)).
Qed.

(* Aschbacher, exercise 3.6 (used in proofs of Aschbacher 24.7 and B & G 1.10 *)
Lemma comm_norm_cent_cent H G K :
    H \subset 'N(G) -> H \subset 'C(K) -> G \subset 'N(K) ->
  [~: G, H] \subset 'C(K).
Proof.
move=> nGH /centsP cKH nKG; rewrite commGC gen_subG centsC.
apply/centsP=> x Kx _ /imset2P[y z Hy Gz ->]; red.
rewrite mulgA -[x * _]cKH ?groupV // -!mulgA; congr (_ * _).
rewrite (mulgA x) (conjgC x) (conjgCV z) 3!mulgA; congr (_ * _).
by rewrite -2!mulgA (cKH y) // -mem_conjg (normsP nKG).
Qed.

Lemma charR H K G : H \char G -> K \char G -> [~: H, K] \char G.
Proof.
case/charP=> sHG chH /charP[sKG chK]; apply/charP.
by split=> [|f infj Gf]; [rewrite comm_subG | rewrite morphimR // chH // chK].
Qed.

Lemma der_char n G : G^`(n) \char G.
Proof. by elim: n => [|n IHn]; rewrite ?char_refl // dergSn charR. Qed.

Lemma der_sub n G : G^`(n) \subset G.
Proof. by rewrite char_sub ?der_char. Qed.

Lemma der_norm n G : G \subset 'N(G^`(n)).
Proof. by rewrite char_norm ?der_char. Qed.

Lemma der_normal n G : G^`(n) <| G.
Proof. by rewrite char_normal ?der_char. Qed.

Lemma der_subS n G : G^`(n.+1) \subset G^`(n).
Proof. by rewrite comm_subG. Qed.

Lemma der_normalS n G : G^`(n.+1) <| G^`(n).
Proof. by rewrite sub_der1_normal // der_subS. Qed.

Lemma morphim_der rT D (f : {morphism D >-> rT}) n G :
   G \subset D -> f @* G^`(n) = (f @* G)^`(n).
Proof.
move=> sGD; elim: n => // n IHn.
by rewrite !dergSn -IHn morphimR ?(subset_trans (der_sub n G)).
Qed.

Lemma dergS n G H : G \subset H -> G^`(n) \subset H^`(n).
Proof. by move=> sGH; elim: n => // n IHn; apply: commgSS. Qed.

Lemma quotient_der n G H : G \subset 'N(H) -> G^`(n) / H = (G / H)^`(n).
Proof. exact: morphim_der. Qed.

Lemma derJ G n x : (G :^ x)^`(n) = G^`(n) :^ x.
Proof. by elim: n => //= n IHn; rewrite !dergSn IHn -conjsRg. Qed.

Lemma derG1P G : reflect (G^`(1) = 1) (abelian G).
Proof. exact: commG1P. Qed.

End Commutator_properties.

Implicit Arguments derG1P [gT G].

Lemma der_cont n : GFunctor.continuous (derived_at n).
Proof. by move=> aT rT G f; rewrite morphim_der. Qed.

Canonical der_igFun n := [igFun by der_sub^~ n & der_cont n].
Canonical der_gFun n := [gFun by der_cont n].
Canonical der_mgFun n := [mgFun by dergS^~ n].

Lemma isog_der (aT rT : finGroupType) n (G : {group aT}) (H : {group rT}) :
  G \isog H -> G^`(n) \isog H^`(n).
Proof. exact: gFisog. Qed.